

CORRESPONDENCE COVER SHEET WASTE PERMITS DIVISION TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Date: 30 January 2024 Facility Name: Calaveras Plant Site Permit or Registration No.: CCR102 Nature of Correspondence: Initial/New Response/Revision*

*If Response/Revision, please provide previous TCEQ Tracking No.: (Previous TCEQ Tracking No. can be found in the Subject line of the TCEQ's response letter to your original submittal.)

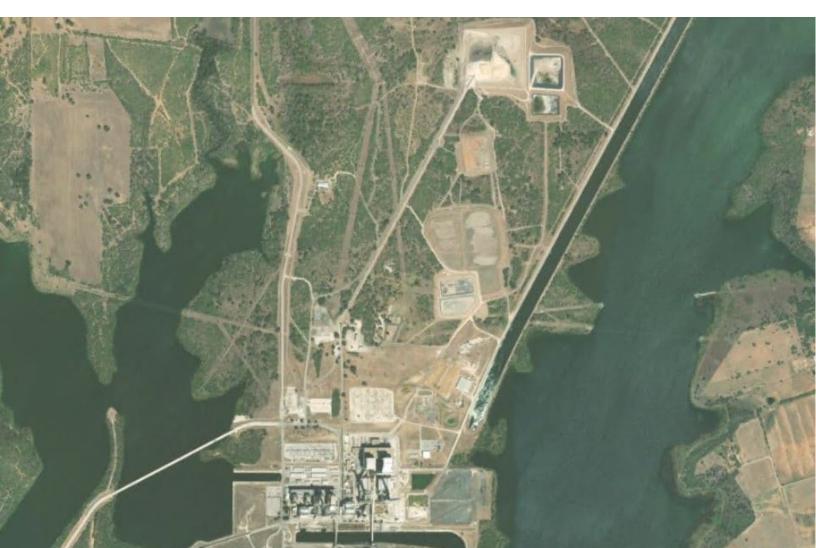
This cover sheet should accompany all correspondences submitted to the Waste Permits Division and should be affixed to the front of your submittal as a cover page. Please check the appropriate box for the type of correspondence being submitted. For questions regarding this form, please contact the Waste Permits Division at (512) 239-2335.

APPLICATIONS	REPORTS and RESPONSES				
□ New Notification	Closure Report				
□ New Permit (including Subchapter T)	Groundwater Alternate SRC Demonstration				
New Registration (including Subchapter T)	Groundwater Corrective Action				
🔲 Major Amendment	Groundwater Monitoring Report				
🔲 Minor Amendment	Groundwater Statistical Evaluation				
Limited Scope Major Amendment	Landfill Gas Corrective Action				
□ Notice Modification	Landfill Gas Monitoring				
□ Non-Notice Modification	Liner Evaluation Report				
Transfer/Name Change Modification	🗌 Soil Boring Plan				
Temporary Authorization	🔲 Special Waste Request				
Uvoluntary Revocation	Other:				
🗋 Subchapter T Workplan					
Other:					

Table 1 - Municipal Solid Waste

Table 2 - Industrial	& Hazardous Waste

Table 2 Hiddstrial & Hazardous Waste						
APPLICATIONS	REPORTS and RESPONSES					
🗋 New	Annual/Biennial Site Activity Report					
🗌 Renewal	CfPT Plan/Result					
Post-Closure Order	Closure Certification/Report					
🗋 Major Amendment	Construction Certification/Report					
🗌 Minor Amendment	CPT Plan/Result					
Class 3 Modification	Extension Request					
Class 2 Modification	Groundwater Monitoring Report - Evap Pond					
Class 1 ED Modification	🗌 Interim Status Change					
Class 1 Modification	🔲 Interim Status Closure Plan					
Endorsement	Soil Core Monitoring Report					
Temporary Authorization	Treatability Study					
Uvoluntary Revocation	🗌 Trial Burn Plan/Result					
335.6 Notification	Unsaturated Zone Monitoring Report					
Other:	□ Waste Minimization Report					
	Other:					



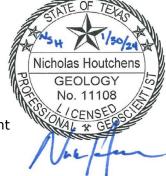
Annual Groundwater Monitoring and Corrective Action Report

Calaveras Power Station – Evaporation Pond San Antonio, Texas PREPARED FOR CPS Energy

DATE 30 January 2024

REFERENCE 0681818

SIGNATURE PAGE


Annual Groundwater Monitoring and Corrective Action Report

Calaveras Power Station – Evaporation Pond San Antonio, Texas

. Bauguss,

Partner-in-Charge

Nicholas Houtchens, P.G. Project Geologist

Environmental Resources Management Southwest, Inc. 111 Congress Avenue Suite 500 Austin, Texas 78701 T +1 512 459 4700

Texas Registered Engineering Firm F-2393

Texas Board of Professional Geoscientist Firm 50036

© Copyright 2024 by The ERM International Group Limited and/or its affiliates ('ERM'). All Rights Reserved.

No part of this work may be reproduced or transmitted in any form or by any means, without prior written permission of ERM.

Malton Inerina

Walter 'Walyy' Zverina Project Manager

CONTENTS

1.	CURRENT STATUS SUMMARY	1
2.	INTRODUCTION	2
3.	PROGRAM STATUS	4
3.1	GROUNDWATER OBSERVATIONS	4
3.2	SAMPLING SUMMARY	5
3.3	DATA QUALITY	5
4.	STATISTICAL ANALYSIS AND RESULTS	6
4.1	INTERWELL VERSUS INTRAWELL COMPARISONS	6
4.2	ESTABLISHMENT OF UPGRADIENT DATASET	6
	4.2.1 Descriptive Statistics	6
	4.2.2 Outlier Determination4.2.3 Check for Temporal Stability	7 7
4.3	ESTABLISHING UPPER PREDICTION LIMITS	7
4.4	CONCLUSIONS	8
5.	RECOMMENDATIONS	10
6.	REFERENCES	11

APPENDICES

APPENDIX A LABORATORY DATA PACKAGES	
APPENDIX B STATISTICAL ANALYSIS TABLES AND FIG	GURES
APPENDIX C APRIL 2023 GROUNDWATER SAMPLING	RESULTS

LIST OF TABLES TABLE 1 GROUNDWATER ELEVATIONS SUMMARY TABLE 2 GROUNDWATER SAMPLING SUMMARY TABLE 3 GROUNDWATER ANALYTICAL RESULTS SUMMARY

LIST OF FIGURES

FIGURE 1	CCR WELL NETWORK LOCATION MAP	1
FIGURE 2A	POTENTIOMETRIC SURFACE MAP – APRIL 2023	1
FIGURE 2B	POTENTIOMETRIC SURFACE MAP – OCTOBER 2023	1

1

1

1

1. CURRENT STATUS SUMMARY

As required in Title 40, Code of Federal Regulations (CFR), Part 257.90 and Title 30, Texas Administrative Code (TAC), Chapter 352.901, this section provides an overview of the current status of the groundwater monitoring and corrective action program for the Evaporation Pond (EP) located at the CPS Energy Calaveras Power Station:

- At the start of the 2023 annual reporting period, the EP was operating under the detection monitoring program, as defined in in 40 CFR §257.94 and 30 TAC §352.941.
- At the end of the 2023 annual reporting period, the EP was operating under the detection monitoring program, as defined in in 40 CFR §257.94 and 30 TAC §352.941.
- An *Alternative Source Demonstration* was prepared and submitted pursuant to 40 CFR §257.94(e) and 30 TAC §352.941 during the 2023 annual reporting period.
- At this time, there was no confirmed statistically significant increase over background for one or more constituents listed in Appendix III pursuant to 40 CFR §257.94(e) and 30 TAC §352.941(a).
- An assessment monitoring program was not required or initiated for the EP.
- A remedy was not required or selected pursuant to 40 CFR §257.97 and 30 TAC §352.971 during the 2023 annual reporting period.
- No remedial activities were initiated or are ongoing pursuant to 40 CFR §257.98 and 30 TAC §352.981 during the 2023 annual reporting period.

2. INTRODUCTION

CPS Energy owns and operates the Calaveras Power Station which consists of two power plants [J.T. Deely (ceased operation at the end of December 2018) and J.K. Spruce] that are subject to regulation under Title 40, Code of Federal Regulations, Part 257 (40 CFR §257) Subpart D (a.k.a. the Federal CCR Rule) and Title 30, Texas Administrative Code, Chapter 352 (30 TAC §352), Subchapter H (a.k.a. the Texas CCR Rule), collectively referred to as the CCR Rules. The Power Station is located in unincorporated Bexar County, Texas, approximately 13 miles southeast of San Antonio. Currently, two CCR units [Fly Ash Landfill (FAL) and Plant Drains Pond (PDP)] are in operation and three CCR units [Bottom Ash Ponds (BAPs), Evaporation Pond (EP) and Sludge Recycle Holding Pond (SRHP)] are undergoing closure. This *Annual Groundwater Monitoring and Corrective Action Report* (Report) addresses only the EP.

This Report was produced by Environmental Resource Management, Inc. (ERM), on behalf of CPS Energy, and summarizes the groundwater monitoring activities for the EP in 2023 and provides a statistical summary of the findings for samples collected in October 2023. Consistent with the notification requirements of the CCR Rule, this Report will be posted to the operational record and notification will be made to the State of Texas. Additionally, this Report will be placed on the publicly accessible internet site. The table below cross references the reporting requirements under the CCR Rule with the contents of this Report.

Regulatory Citation	Requirement (paraphrased)	Where Addressed in this Report
40 CFR §257.90(e) and 30 TAC §352.901	Status of the groundwater monitoring and corrective action program	Sections 1 and 3
40 CFR §257.90(e) and 30 TAC §352.901	Summarize key actions completed	Section 3
40 CFR §257.90(e) and 30 TAC §352.901	Describe any problems encountered and actions to resolve problems	Section 3
40 CFR §257.90(e) and 30 TAC §352.901	Key activities for upcoming year	Section 5
40 CFR §257.90(e)(1) and 30 TAC §352.901	Map or aerial image of CCR unit and monitoring wells	Figure 1
40 CFR §257.90(e)(2) and 30 TAC §352.901	Identification of new monitoring wells installed or decommissioned during the preceding year	Section 3
40 CFR §257.90(e)(3) and 30 TAC §352.901	Summary of groundwater data, monitoring wells and dates sampled, and whether sample was required under detection or assessment monitoring	Sections 3 and 4, Tables 1 through 3, and Figures 2A and 2B

Regulatory Requirement Cross-Reference

Regulatory Citation	Requirement (paraphrased)	Where Addressed in this Report
40 CFR §257.90(e)(4) and 30 TAC §352.901	Narrative discussion of any transition between monitoring programs	Section 5

The EP is located northeast of the Power Station generating units and is south of the FAL. The EP received boiler chemical cleaning waste and other authorized liquid wastes. The EP was originally constructed as a fly ash landfill, but was converted from a landfill to an impoundment in 1996. The CCR unit location is shown in Figure 1.

3. PROGRAM STATUS

From December 2016 through October 2017, groundwater samples were collected as part of background sampling. After October 2017, groundwater samples were collected as part of Detection Monitoring. The samples were collected from the groundwater monitoring well network certified for use in determining compliance with the CCR Rules.

Historically, the groundwater monitoring well network consisted of three upgradient monitor wells (JKS-47, JKS-63R, and JKS-64) and three downgradient monitor wells (JKS-36, JKS-61, and JKS-62). As documented in the *2020 Annual Groundwater Monitoring and Corrective Action Report – Evaporation Pond* (ERM, 2021), non-proportional changes in water levels were observed during the 2020 monitoring events and a site-wide water level study (Study) was recommended to understand temporal changes in hydrogeology. ERM completed this Study by collecting five rounds of water level measurements at each CCR Unit, which included observations from other on-site monitor wells, from February to October 2021.

As documented in the Study, JKS-64 no longer appeared to be a viable background well. Therefore, ERM recommended that JKS-64 be re-designated as a downgradient well for monitoring and statistical analysis. As such, the revised groundwater monitoring well network consists of two upgradient monitor wells (JKS-47 and JKS-63R) and four downgradient monitor wells (JKS-36, JKS-61, JKS-62, and JKS-64). This revision to the groundwater monitoring network is documented in the updated *Groundwater Monitoring System* (ERM, 2023) and the updated *Groundwater Sampling and Analysis Program* (*GSAP*) (ERM, 2023).

In October 2023, an additional well, JKS-72, was installed north of the EP to expand the monitoring well network surrounding the CCR unit. It is anticipated that JKS-72 will be designated as a downgradient monitoring well; however, CPS Energy is currently confirming survey data.

All monitor wells are screened within the uppermost groundwater bearing unit (GWBU) in the vicinity of the EP. The uppermost GWBU is approximately 20 feet thick and is comprised of clayey/silty sand to well-sorted sand. The uppermost GWBU is located below unconfining units (i.e., sands, silts, and low to medium plasticity clays), and above a high plasticity clay (lower confining unit).

The monitor well locations are shown in Figure 1. No problems were encountered in the data collection or in well performance with the exception of JKS-62. Groundwater samples were not collected from JKS-62 during the April and October 2023 sampling events due to well performance (well went dry). JKS-62 well performance will be evaluated prior to the April 2024 sampling event. As mentioned above, JKS-72 was installed in October 2023. No monitor wells were decommissioned in 2023.

Although CPS Energy ceased operation of the EP in September 2022 in preparation for closure; the EP will continue to be monitored until the unit has completed closure.

3.1 GROUNDWATER OBSERVATIONS

Depth to groundwater surface measurements were made at each monitor well prior to each sampling event. Groundwater elevations were calculated by subtracting the depth to ground-water measurement from the surveyed reference elevation for each well.

Groundwater elevations collected during all the monitoring events are summarized in Table 1. Groundwater elevations and the potentiometric surface for the April and October 2023 monitoring events are shown in Figure 2A and Figure 2B, respectively. For both sampling events, groundwater north of the EP appears to flow southeast and groundwater south of the EP appears to flow generally east and northeast. The horizontal gradient is approximately 0.003 feet/foot and 0.004 feet/foot for the April and October 2023 monitoring events, respectively.

3.2 SAMPLING SUMMARY

A summary of the total number of samples collected from each monitor well is provided in Table 2. Groundwater analytical results for Appendix III constituents for all the monitoring events are summarized in Table 3. Laboratory data packages are provided in Appendix A.

The EP monitor wells were sampled by CPS Energy using low flow sampling techniques during the monitoring events. With the exception of JKS-62 (as noted above), no other data gaps were identified during the 2023 semi-annual groundwater monitoring events.

3.3 DATA QUALITY

ERM reviewed field and laboratory documentation to assess the validity, reliability and usability of the analytical results. Samples were sent to San Antonio Testing Laboratory (SATL), located in San Antonio, Texas for analysis. Chain-of-Custody procedures were followed throughout the sample handling process. Data quality information reviewed for these results included field sampling forms, chain-of-custody documentation, holding times, lab methods, cooler temperatures, laboratory method blanks, laboratory control sample recoveries, field duplicate samples, matrix spikes / matrix spike duplicates, quantitation limits, and equipment blanks following data quality review guidance from the Environmental Protection Agency and the Texas Commission on Environmental Quality. A summary of the data usability qualifiers is included in Table 3. The data quality review found the results to be valid, reliable, and useable for decision making purposes with the listed qualifiers. No analytical results were rejected.

4. STATISTICAL ANALYSIS AND RESULTS

Consistent with the CCR Rules and with the updated GSAP, a prediction limit approach (40 CFR §257.93(f)) was used to identify potential impacts to groundwater. The steps outlined in the decision framework in the GSAP include:

- Interwell versus intrawell comparisons;
- Establishment of the upgradient dataset;
- Calculating prediction limits; and
- Conclusions.

Tables and figures generated as part of the statistical analysis, including updating of prediction limits are provided in Appendix B. The remaining sections of the report are focused on evaluation of the most recent October 2023 data. Note the April 2023 sampling results were evaluated as discussed in Appendix C. The April 2023 sampling results were evaluated relative to the preupdated prediction limits.

4.1 INTERWELL VERSUS INTRAWELL COMPARISONS

When multiple upgradient wells were available within the same unit, concentrations were compared among these wells to determine if they could be pooled to create a single, interwell, upgradient dataset. For each analyte, Boxplots (Appendix B, Figure 1) and Kruskal-Wallis test results (Appendix B, Table 1) are provided for upgradient wells. The statistical tests indicate that:

- Two analytes [Fluoride and pH] are suitable for interwell analysis, with no significant differences present in upgradient data; and
- The remaining five analytes [Boron, Calcium, Chloride, Sulfate, and TDS] rely on intrawell analysis, as there are significant differences present in upgradient data.

As discussed in the *GSAP* and presented in the following sections, analytes for interwell analysis utilize a pooled dataset of all upgradient wells, whereas analytes for intrawell analysis utilize individual, separate datasets from each upgradient well.

4.2 ESTABLISHMENT OF UPGRADIENT DATASET

When evaluating the concentrations of analytes in groundwater, USEPA guidance (2009) recommends performing a careful quality check of the data to identify any anomalies. In addition to the data validation that was performed, descriptive statistics, outlier testing, and temporal stationarity checks were completed to finalize the upgradient dataset.

4.2.1 DESCRIPTIVE STATISTICS

Descriptive statistics were calculated for the upgradient wells and analytes at the site (Appendix B, Table 2). The descriptive statistics highlight a number of relevant characteristics about the upgradient datasets including:

• There are two upgradient monitoring wells and seven Appendix III constituents for Detection Monitoring.

- There are a total of 12 well-analyte combinations after accounting for interwell versus intrawell analysis.
 - 12 well-analyte combinations have detection rates greater than or equal to 50 percent.
 - Ten well-analyte combinations have 100 percent detects.
 - Six well-analyte combinations follow a normal distribution (using Shapiro-Wilks Normality Test).
 - Two well-analyte combinations follow a log-normal distribution.
 - The remaining well-analyte combinations have no discernible distribution.

4.2.2 OUTLIER DETERMINATION

Both statistical and visual outlier tests were performed on the upgradient datasets. A total of three outliers were initially flagged in the upgradient datasets. Data points identified as both statistical and visual outliers (Appendix B, Table 3 and Appendix B, Figure 2) were reviewed prior to exclusion from the dataset.

Of the three data points that were flagged as outliers, all three were retained in the dataset. After review, it was determined that these values were consistent with natural fluctuations and concentrations detected in other upgradient wells in the area. No analytical or sampling issues were identified during data review; therefore, the three outlier values were considered valid and were retained in the upgradient datasets.

4.2.3 CHECK FOR TEMPORAL STABILITY

A trend test was performed for all values in the upgradient wells with at least eight detected data points and at least 50 percent detection rate. Time series figures of upgradient wells are provided in Appendix B, Figure 3. Additionally, the Mann Kendall trend test results are provided in Appendix B, Table 4. The results of the trend analysis indicate that:

- There are a total of 12 well-analyte combinations in the upgradient dataset.
 - 12 well-analyte combinations meet the data requirements of the trend test.
 - Four well-analyte combinations had a significant increasing trend.
 - One well-analyte combinations had a significant decreasing trend.
 - Seven well-analyte combinations had no significant trend (i.e., concentrations were stable over time).

4.3 ESTABLISHING UPPER PREDICTION LIMITS

A multi-part assessment of the monitoring wells was performed to determine what type of upper prediction limit (UPL) to calculate as a compliance point. A decision framework was applied for each upgradient well based on interwell/intrawell analysis, data availability, and presence of temporal trends. A summary of the prediction limits and the methods used to calculate them are provided in Appendix B, Table 5.

A total of five well-analyte combinations were found to have either increasing or decreasing trends. For these well-analyte pairs, a bootstrapped UPL calculated around a Theil Sen trend was used to derive a more accurate UPL.

The remaining seven well-analyte combinations were found to have no significant trend. ProUCL v5.2 was used to calculate static UPLs using an annual site-wide false positive rate of 0.1 with a 1-of-2 re-testing approach.

A final UPL was selected for each analyte and compared to the most recent sample result in each downgradient well. For pH, a final lower prediction limit (LPL) was also identified and used for comparison. For the two analytes with interwell analysis, the upgradient dataset was pooled prior to UPL calculations, resulting in a single UPL value per analyte. For the five analytes with intrawell analysis, a UPL value was calculated for each of the upgradient wells. For these wells and analytes, the maximum UPL was selected as the representative UPL for each analyte, to capture the possible range of values found in upgradient wells. A similar approach was used to determine the LPL for pH; however, the minimum LPL was selected in the case of intrawell analysis. All final UPL and LPL values are shown in the table below. Full upgradient well prediction limit calculations are provided in Appendix B, Table 5.

Analysis Type	Analyte	LPL	UPL	Unit
Intrawell	Boron	-	1.65	mg/L
Intrawell	Calcium	-	1,410	mg/L
Intrawell	Chloride	-	3,570	mg/L
Interwell	Fluoride	-	0.243	mg/L
Interwell	рН	5.08	6.68	SU
Intrawell	Sulfate	-	2,550	mg/L
Intrawell	TDS	-	11,600	mg/L

Final UPLs and LPLs Values

4.4 CONCLUSIONS

The downgradient samples collected during the October 2023 sampling event were used for compliance comparisons. All downgradient wells were below the UPLs and above the LPLs with the following exceptions shown on the table below. Full downgradient results are provided in Appendix B, Table 6.

Well LPL UPL Analyte Sample Value Unit Date Fluoride **JKS-36** _ 0.243 2023-10-17 0.517 mg/L Fluoride JKS-61 0.243 2023-10-17 0.445 _ mg/L pН JKS-36 5.08 6.68 2023-10-17 6.99 SU

Potential Exceedances

Analyte	Well	LPL	UPL	Sample Date	Value	Unit
рН	JKS-61	5.08	6.68	2023-10-17	7.51	SU

Initial exceedances of the UPL may be confirmed with re-testing of the downgradient wells per the 1-of-2 retesting scheme. If the initial exceedance is confirmed with re-testing results in the same well, the well-analyte pair will be declared a statistically significant increase (SSI) above background. If an SSI is found, a notification or alternate source demonstration will be prepared within 90 days. Any wells with re-testing results at or below the UPL, and at or greater than the LPL, will be considered in compliance and will not require further action. These re-testing results will be reported in the subsequent *Alternative Source Demonstration*.

All downgradient wells with initial exceedances were examined for trends to assess the stability of concentrations. A summary of these trend test results can be found in Appendix B, Table 6. Of the wells with potential SSIs, fluoride concentrations had a decreasing trend at JKS-61.

All wells with potential SSIs are plotted in Appendix B, Figure 4. All potential SSIs are within one order of magnitude of their UPLs. Trends in these wells relative to UPLs will be monitored closely in future sampling events.

5. RECOMMENDATIONS

Currently, there are no plans to transition between Detection Monitoring and Assessment Monitoring. Consistent with the 1-of-2 retesting approach described in the Unified Guidance (USEPA 2009) and the *GSAP*, initial exceedances may be retested within 90 days. Based on these findings, Detection Monitoring and/or Assessment Monitoring will be initiated as appropriate under 40 CFR §257.94 and 30 TAC §352.941, and 40 CFR §257.95 and 30 TAC §352.951.

6. **REFERENCES**

- ERM, 2023. *Groundwater Monitoring System*. CPS Energy, Calaveras Power Station, San Antonio, Texas.
- ERM, 2023. *Groundwater Sampling and Analysis Program*. CPS Energy, Calaveras Power Station, San Antonio, Texas.
- USEPA. 2009. *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities*. Unified Guidance. USEPA/530/R/09/007. Office of Resource Conservation and Recovery. Washington, D.C.

TABLES

- TABLE 1 GROUNDWATER ELEVATIONS SUMMARY
- TABLE 2 GROUNDWATER SAMPLING SUMMARY
- TABLE 3 GROUNDWATER ANALYTICAL RESULTS SUMMARY

TABLE 1 Groundwater Elevations Summary CPS Energy - Calaveras Power Station Evaporation Pond

		JKS-47 Upgradient (1) JKS-63 Upgradient		JKS-63R U	Ipgradient	JKS-64 Downgradient			
		TOC Elevation	513.63	TOC Elevation	526.86	TOC Elevation	522.27	TOC Elevation	507.84
Sampling Event	Sampling Event Dates	Depth to Water (feet btoc)	Water Level (msl)	Depth to Water (feet btoc)	Water Level (msl)	Depth to Water (feet btoc)	Water Level (msl)	Depth to Water (feet btoc)	Water Level (msl)
1	12/6/16 to 12/8/16	30.98	482.65	44.45	482.41	(4)	(4)	24.98	482.86
2	2/21/17 to 2/23/17	30.64	482.99	44.25	482.61	(4)	(4)	24.24	483.60
3	3/28/17 to 3/30/17	30.47	483.16	44.12	482.74	(4)	(4)	24.21	483.63
4	5/2/17 to 5/4/17	30.29	483.34	43.89	482.97	(4)	(4)	24.46	483.38
5	6/20/17 to 6/21/17	30.40	483.23	43.85	483.01	(4)	(4)	24.40	483.44
6	7/25/17 to 7/26/17	30.62	483.01	44.00	482.86	(4)	(4)	24.78	483.06
7	8/29/17 to 8/30/17	30.50	483.13	43.90	482.96	(4)	(4)	25.70	482.14
8	10/10/17 to 10/11/17	30.71	482.92	44.05	482.81	(4)	(4)	24.95	482.89
9	4/4/18 to 4/5/18	30.42	483.21	43.81	483.05	(4)	(4)	24.67	483.17
10	10/30/18 to 10/31/18	30.90	482.73	(2)	(2)	(4)	(4)	25.46	482.38
11	4/9/19 to 4/10/19	30.17	483.46	(2)	(2)	39.27 (5)	483.00	24.50	483.34
12	10/22/19 to 10/23/19	30.87	482.76	(3)	(3)	39.48	482.79	25.30	482.54
13	4/28/20 to 4/29/20	30.60	483.03	(3)	(3)	39.36	482.91	25.15	482.69
14	10/20/20 to 10/21/20	31.28	482.35	(3)	(3)	40.25 (6)	482.02	25.88	481.96
15	4/13/21 to 4/14/21	31.24	482.39	(3)	(3)	39.85	482.42	25.88	481.96
16	10/19/21 to 10/20/21	31.12	482.51	(3)	(3)	39.91	482.36	25.12	482.72
17	4/13/22 to 4/14/22	31.26	482.37	(3)	(3)	39.90	482.37	29.58	478.26
18	10/13/22 to 10/14/22	31.73	481.90	(3)	(3)	40.32	481.95	26.20	481.64
19	4/13/23 TO 4/16/23	31.49	482.14	(3)	(3)	40.40	481.87	26.51	481.33
20	10/10/2023	32.17	481.46	(3)	(3)	40.67	481.60	26.79	481.05

		JKS-36 Dov	wngradient	JKS-61 Downgradient		JKS-62 Dov	vngradient
		TOC Elevation	508.51	TOC Elevation 505.51		TOC Elevation	509.84
Sampling Event	Sampling Event Dates	Depth to Water (feet btoc)	Water Level (msl)	Depth to Water (feet btoc)	Water Level (msl)	Depth to Water (feet btoc)	Water Level (msl)
1	12/6/16 to 12/8/16	25.99	482.42	23.95	481.56	28.63	481.21
2	2/21/17 to 2/23/17	25.78	482.63	23.31	482.20	28.30	481.54
3	3/28/17 to 3/30/17	25.37	483.04	23.10	482.41	28.42	481.42
4	5/2/17 to 5/4/17	43.89	464.52	22.85	482.66	28.00	481.84
5	6/20/17 to 6/21/17	25.40	483.01	22.05	483.46	28.05	481.79
6	7/25/17 to 7/26/17	25.62	482.79	23.50	482.01	28.12	481.72
7	8/29/17 to 8/30/17	25.70	482.71	23.60	481.91	28.12	481.72
8	10/10/17 to 10/11/17	25.91	482.50	23.97	481.54	28.00	481.84
9	4/4/18 to 4/5/18	25.46	482.95	23.08	482.43	27.66	482.18
10	10/30/18 to 10/31/18	25.90	482.51	23.94	481.57	28.33	481.51
11	4/9/19 to 4/10/19	25.23	483.18	22.97	482.54	27.52	482.32
12	10/22/19 to 10/23/19	25.90	482.51	24.20	481.31	27.85	481.99
13	4/28/20 to 4/29/20	25.45	482.96	23.74	481.77	27.78	482.06
14	10/20/20 to 10/21/20	26.03	482.38	24.60	480.91	29.10 (6)	480.74
15	4/13/21 to 4/14/21	26.08	482.33	24.54	480.97	28.56	481.28
16	10/19/21 to 10/20/21	26.14	482.27	24.05	481.46	28.19	481.65
17	4/13/22 to 4/14/22	26.28	482.23	23.93	481.58	28.25	481.59
18	10/13/22 to 10/14/22	26.44	482.07	25.37	480.14	28.95	480.89
19	4/13/23 to 4/16/23	26.55	481.96	24.97	480.54	28.44	481.40
20	10/10/2023	26.98	481.53	25.97	479.54	28.79	481.05

NOTES:

NOTES: btoc = below top of casing msl = mean sea level (1) JKS-47 was re-sampled on 2/28/17. (2) Blockage in JKS-63 well casing. (3) JKS-63 was plugged and abandoned on 5/2/19. (4) JKS-63R was installed on 5/2/19 to replace JKS-63. (5) JKS-63R water level was initially measured on 8/20/19. (6) JKS-62 and JKS-63R were gauged on 11/17/20 due to a blockage encountered in the well casing during Event 14 (October 2020).

TABLE 2 Groundwater Sampling Summary CPS Energy - Calaveras Power Station Evaporation Pond

			Number of										2016 - 2023	Sample Da	ates									Manihasina
CCR Unit	Well ID	Well Function	2016 - 2023	to	to	to	to	to	to	to	10/10/17 to 10/11/17	to	10/30/18 to 10/31/18	to	10/22/19 to 10/23/19	to	to	to	to	4/13/22 : to 4/14/22 :	to	to	10/17/23 to	Program
	JKS-36	Downgradient Monitoring	18	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Detection
	JKS-47	Upgradient Monitoring	18	Х	X (1)	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Detection
	JKS-61	Downgradient Monitoring	18	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Detection
Evaporatio	JKS-62	Downgradient Monitoring	17	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X (6)	Х	Х	Х	(7)	(7)	(7)	Detection
n Pond	JKS-63	Plugged and Abandoned	8	Х	Х	Х	Х	(2)	Х	Х	Х	Х	(3)	(3)	(3)	(3)	(3)	(3)	(3)	(3)	(3)	(3)	(3)	None
	JKS-63R	Upgradient Monitoring	7	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4)	(4) (5)	Х	Х	X (6)	Х	Х	Х	Х	Х	Х	Detection
	JKS-64	Downgradient Monitoring	18	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Detection
	JKS-72	Downgradient Monitoring	1	(8)	(8)	(8)	(8)	(8)	(8)	(8)	(8)	(8)	(8)	(8)	(8)	(8)	(8)	(8)	(8)	(8)	(8)	(8)	Х	Detection

NOTES:
X = Indicates that a sample was collected.
(1) JKS-47 was re-sampled on 2/28/2017.
(2) JKS-63 was not sampled during Event 5 (June 2017), due to the well going dry during sampling activities.
(3) JKS-63 was not sampled during Event 10 (October 2018) and Event 11 (April 2019) due to blockage in the well casing. JKS-63 was plugged and abandoned on 5/2/19.
(4) JKS-63R was installed on 5/2/19 to replace JKS-63.
(5) JKS-63 and JKS-63R were sampled on 8/20/19.
(6) JKS-62 and JKS-63R were sampled on 11/17/20. Samples were not collected during the October 2020 sampling event due to blockages in the well casings.
(7) JKS-62 was not sampled due to the well going dry before sampling activities.
(8) JKS-72 was installed on 10/4/23.

										JKS-4	7 Upgradient										
	Sample Date	12/8/16	2/28/17	3/29/17	5/3/17	6/21/17	7/26/17	8/30/17	10/11/17	4/5/18	10/30/18	4/10/19	10/23/19	4/29/20	10/21/20	4/14/21	10/19/21	4/14/22	10/26/22	04/19/23	10/18/23
	Task	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Event 11	Event 12	Event 13	Event 14	Event 15	Event 16	Event 17	Event 18	Event 19	Event 20
Constituents	Unit	Dec 2016	Feb 2017	Mar 2017	May 2017	Jun 2017	Jul 2017	Aug 2017	Oct 2017	Apr 2018	Oct 2018	Apr 2019	Oct 2019	Apr 2020	Oct 2020	Apr 2021	Oct 2021	Apr 2022	Oct 2022	April 2023	Oct 2023
Appendix III - Detection Mon	nitoring																				
Boron	mg/L	0.824	0.838	0.696	0.817	0.804	0.828 JH	0.760	1.02		0.806	0.590	1.05	0.800	0.904 JL	0.816	0.881	0.947	0.852	0.680	
Calcium	mg/L	54.0	62.1	168	26.2	71.1	62.7 JH	66.7	36.1	53.5	83.2 D	128	36.5	43.1	28.4	62.1	67.1	47.0	60.1	77.5	68.8
Chloride	mg/L	107	150	232 D	193	168	148 JH	210 D	68.5	151	186	279	53.9 X	107	60.9	154	162	123	133	196	168
Fluoride	mg/L	0.0360 U	0.0360 U	0.315	0.382 JH	0.213 JH	0.360 U	0.0960 U	0.0360 U	0.0360 U	0.0998 J	0.0985 J	0.154 JH	0.163	0.161	0.142	0.018 U	0.018 U	0.018 U	0.018 U	0.101
Sulfate	mg/L	213 D	267 D	369 D	299	266 D	248 JH	284 D	171	236	262	347	210 X	257	195	278	271	279	260	295	265 J
pH - Field Collected	SU	5.82	5.83	5.75	6.00	5.75	5.85	5.90	5.93	5.91	5.72	5.92	4.58	5.87	5.88	6.09	6.16	6.26	6.12	5.56	
Total dissolved solids	mg/L	811	922	1170	1060	979	806 JH	904	677	787	727	1240	665	772	782	929	980	826	935	1040	899
Appendix IV - Assessment M	onitoring																				
Antimony	mg/L	0.00120 U	0.000240 U	0.000294 J	0.00120 U	0.000275 J	0.000240 U	0.000240 U	0.000240 U	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Arsenic	mg/L	0.00442 J	0.00130 J	0.00136 J	0.00123 U	0.00185 J	0.00105 J	0.00124 J	0.000246 U	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	. NR
Barium	mg/L	0.0475	0.0132	0.0180	0.0118 J	0.0154	0.00981	0.0104	0.00785	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	. NR
Beryllium	mg/L	0.000813 J	0.000255 J	0.000131 U	0.000654 U	0.000352 J	0.000131 U	0.000172 J	0.000131 U	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	. NR
Cadmium	mg/L	0.000734 U	0.000637 J	0.000977 J	0.000797 J	0.000735 J	0.000611 J	0.000814 J	0.000147 U	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	. NR
Chromium	mg/L	0.234	0.00430	0.000988 J	0.00262 U	0.00262 J	0.000855 J	0.00130 J	0.000525 U	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	. NR
Cobalt	mg/L	0.00915 J	0.00102 J	0.00153 J	0.00113 J	0.00227	0.000976 J	0.00107 J	0.0000699 U	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	. NR
Fluoride	mg/L	0.0360 U	0.0360 U	0.315	0.382 JH	0.213 JH	0.360 U	0.0960 U	0.0360 U	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR NR
Lead	mg/L	0.00586 J	0.000950 J	0.000448 J	0.000758 U	0.00157 J	0.000202 J	0.000449 J	0.000152 U	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	. NR
Lithium	mg/L	0.0615	0.0478	0.00238 U	0.0207	0.0720	0.0644	0.0799	0.0521	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Mercury	mg/L	0.0000600 J	0.0000263 U	0.0000263 U	0.0000263 U	0.0000263 U	0.0000263 U	0.0000263 U	0.0000263 U	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	. NR
Molybdenum	mg/L	0.0317	0.00126 J	0.00173 J	0.00128 J	0.000788 J	0.000581 J	0.000653 J	0.000255 U	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Selenium	mg/L	0.0493	0.0697	0.0518	0.0564	0.0613	0.0577	0.0525	0.0854	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Thallium	mg/L	0.00166 U	0.000332 U	0.000332 U	0.00166 U	0.000332 U	0.000332 U	0.000332 U	0.000332 U	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Radium-226	pCi/L	1.2 ± 0.342	0.578 ± 0.275	0.630 ± 0.237	0.538 ± 0.192	0.729 ± 0.278	0.304 ± 0.233	1.06 ± 0.361	0.246 ± 0.180	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	. NR
Radium-228	pCi/L	1.66 ± 1.15	1.34 ± 1.05	1.27 ± 0.960 U	2.17 ± 1.01	0.664 ± 0.929	0.771 ± 1.48	1.65 ± 1.05	0.463 ± 0.886	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Radium-226/228 Combined	pCi/L	2.86 ± 1.492	1.918 ± 1.325	1.9 ± 1.197 U	2.708 ± 1.202	1.393 ± 1.207	1.075 ± 1.713	2.71 ± 1.411	0.709 ± 1.066	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR

NOTES: (A) JKS-63 plugged and abandoned and replaced with JKS-63R on 5/2/19. Sample events 1 through 10 collected from JKS-63 and thereafter from JKS-63R.

63R.
(1) Sample not collected due to the well going dry during sampling activities.
(2) Sample not collected due to blockage in the well casing.
mg/L: Milligrams per Liter.
SU: Standard Units.
pCi/L: Picocuries per Liter.
-: Laboratory did not analyze sample for indicated constituent.
R: Resample event.
B: Tarata analyte or common lab contaminant

R: Resample event.
B: Target analyte or common lab contaminant was identified in the method blank.
D: Sample diluted due to targets detected over highest point of calibration curve or due to matrix interference.
J: Analyte detected above method (sample)
H: Bias in sample result likely to be high.
NR: Analysis of this constituent not required for detection monitoring.
I: Bias in sample result likely to be how

L: Bias in sample result likely to be low.

U: Analyte not detected at laboratory reporting limit (Sample Detection Limit).
 X: Matrix Spike/Matrix Spike Duplicate recoveries were found to be outside of the laboratory control limits.

										JKS-63 /	JKS-63R Upg	radient (A)									
	Sample Date	12/8/16	2/22/17	3/29/17	5/3/17		7/26/17	8/30/17	10/11/17	4/5/18		8/20/19	10/23/19	4/29/20	11/17/20	4/14/21	10/19/21	4/14/22	10/26/22	04/18/23	10/18/23
	Task	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Event 11	Event 12	Event 13	Event 14	Event 15	Event 16	Event 17	Event 18	Event 19	Event 20
Constituents	Unit	Dec 2016	Feb 2017	Mar 2017	May 2017	Jun 2017	Jul 2017	Aug 2017	Oct 2017	Apr 2018	Oct 2018	Apr 2019	Oct 2019	Apr 2020	Nov 2020	Apr 2021	Oct 2021	Apr 2022	Oct 2022	April 2023	Oct 2023
Appendix III - Detection Mo	nitoring																				
Boron	mg/L	0.800	0.866		0.981	(1)	1.33 JH	1.23	1.06	1.13	(2)	2.03	1.03	0.950	1.12	1.12	1.23	1.16		1.11	1.33 JL
Calcium	mg/L	783	914	713	1060	(1)	835	174	872	836	(2)		953 D	952	1050	1060	1140	1000	1200	886	
Chloride	mg/L	1230 D	1160 D	1220 D	1340	(1)	1960 JHD		1420	1670	(2)	2000 0	2240	2530	2830	2440	2590	2550	3020	2850	
Fluoride	mg/L	0.0573 J	0.320	0.297	0.364 JH	(1)	0.0971 JH	0.182 JH	0.0360 U	0.0360 U	(2)	0.206 J	0.352 JH	0.018 U	0.018 U	0.018 U	0.018 U	0.124	0.018 U	0.018 U	0.050
Sulfate	mg/L	0.0460 U	1860 D	1890 D	1860	(1)	1970 D	1920 D	1820	2110	(2)	1810 D	1750 D	1810	2120	1720	1640	1760	1820	1890	1920 J
pH - Field Collected	SU	5.61	5.35	5.60	5.85	(1)	5.88	5.82	5.63	5.64	(2)		4.76	5.83	5.79	5.99	6.07	6.29	6.18	6.16	
Total dissolved solids	mg/L	5750	4760	4870	5560	(1)	6410	5000	5080	5220	(2)	6660	5200	7240	8190	8440	9940	8390	10700	9540	7560
Appendix IV - Assessment M	lonitoring																				
Antimony	mg/L	0.00120 U	0.000459 J	0.000695 J	0.00120 U	(1)	0.000240 U	0.000424 J	0.000240 U	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	. NR
Arsenic	mg/L	0.00332 J	0.00294	0.00128 J	0.00123 U	(1)	0.000893 J	0.000992 J	0.000246 U	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Barium	mg/L	0.0626	0.0540	0.0336	0.0316	(1)	0.0294	0.0258	0.0222	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	. NR
Beryllium	mg/L	0.000654 U	0.000930 J	0.000442 J	0.000654 U	(1)	0.000196 J	0.000223 J	0.000131 U	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Cadmium	mg/L	0.00339 J	0.00405	0.00394	0.00316 J	(1)	0.00282	0.00263	0.00285	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	. NR
Chromium	mg/L	1.49	0.735	0.371	0.114	(1)	0.0742	0.0584	0.0130	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Cobalt	mg/L	0.0802	0.0762	0.0546	0.0331	(1)	0.0137	0.0119	0.0119	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	. NR
Fluoride	mg/L	0.0573 J	0.320	0.297	0.364 JH	(1)	0.0971 JH	0.182 JH	0.0360 U	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Lead	mg/L	0.00441 J	0.00599	0.00108 J	0.000758 U	(1)	0.000238 J	0.000551 J	0.000152 U	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Lithium	mg/L	0.000476 U	0.116	0.00238 U	0.654	(1)	0.946	1.15	0.791	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Mercury	mg/L	0.000236	0.000237	0.000206	0.0000400 J	(1)	0.000260	0.000441	0.000376	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	. NR
Molybdenum	mg/L	0.186	0.00789	0.00966	0.00419 J	(1)	0.00281	0.00180 J	0.000255 U	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Selenium	mg/L	0.0188	0.0210	0.0257	0.0188	(1)	0.0288	0.0318	0.0244	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	. NR
Thallium	mg/L	0.00166 U	0.000332 U	0.000332 U	0.00166 U	(1)	0.000332 U	0.000332 U	0.000332 U	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Radium-226	pCi/L	3.42 ± 0.573	2.76 ± 0.476	5.79 ± 0.790	4.57 ± 0.577	(1)	6.7 ± 0.744	7.36 ± 0.874	5.04 ± 0.711	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Radium-228	pCi/L	2.44 ± 1.44	4.13 ± 1.21	2.04 ± 1.61 U	3.41 ± 0.968	(1)	10.9 ± 2.31	1.79 ± 1.27	6.77 ± 1.48	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Radium-226/228 Combined	pCi/L	5.86 ± 2.013	6.89 ± 1.686	7.83 ± 2.4 U	7.98 ± 1.545		17.6 ± 3.054	9.15 ± 2.144	11.81 ± 2.191	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR

NOTES: (A) JKS-63 plugged and abandoned and replaced with JKS-63R on 5/2/19. Sample events 1 through 10 collected from JKS-63 and thereafter from JKS-63R.

(1) Sample not collected due to the well going dry during sampling activities.
(2) Sample not collected due to blockage in the well (2) Sample not collected due to blockage casing.
 mg/L: Milligrams per Liter.
 SU: Standard Units.
 pCi/L: Picocuries per Liter.
 -: Laboratory did not analyze sample for indicated constituent.
 R: Resample event.

B: Target analyte or common lab contaminant was identified in the method blank.

was identified in the method blank.
D: Sample diluted due to targets detected over highest point of calibration curve or due to matrix interference.
D: Analyte detected above method (sample)
H: Bias in sample result likely to be high.
NR: Analysis of this constituent not required for detection monitoring.
Discinct and the last is a sample result likely to be last.

L: Bias in sample result likely to be low.

Dias in sample result likely to be low.
 U: Analyte not detected at laboratory reporting limit (Sample Detection Limit).
 X: Matrix Spike/Matrix Spike Duplicate recoveries were found to be outside of the laboratory control limits.

										JKS-64 D	owngradient										
	Sample Date	12/8/16	2/23/17	3/29/17	5/4/17	6/21/17	7/26/17	8/30/17	10/11/17	4/5/18	10/30/18	4/10/19	10/23/19	4/29/20	10/21/20	4/14/21	10/19/21	4/14/22	10/26/22	04/19/23	10/18/23
	Task	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Event 11		Event 13	Event 14	Event 15	Event 16	Event 17	Event 18	Event 19	Event 20
Constituents	Unit	Dec 2016	Feb 2017	Mar 2017	May 2017	Jun 2017	Jul 2017	Aug 2017	Oct 2017	Apr 2018	Oct 2018	Apr 2019	Oct 2019	Apr 2020	Oct 2020	Apr 2021	Oct 2021	Apr 2022	Oct 2022	April 2023	Oct 2023
Appendix III - Detection Mor	nitoring																				
Boron	mg/L	0.839	0.837	1.14		0.816	0.904 JH	0.835		0.837	0.805	0.804	0.747	0.711	0.735 JL	0.771		0.874	0.731 JL	0.683	0.741
Calcium	mg/L	24.0	24.0	31.4	23.8	20.6	21.7 JH	21.6	25.2	23.6	24.4	23.0	24.4	20.3	20.4	23.9	0.0004 J	25.1	23.2	21.6	23.8
Chloride	mg/L	12.7	12.4		11.0	11.4	11.5	11.5	9.63	14.2	15.5	16.6	17.7	18.2	16.0		15.7	16.2	20.2	19.2	22.4
Fluoride	mg/L	0.0360 U	0.294 JH	0.332	0.188	0.231 JH	0.157 JH	0.224 JH	0.0360 U	0.0360 U	0.106 J	0.121 J	0.176 JH	0.143	0.101	0.380	0.018 U	0.183	0.383	0.107	
Sulfate	mg/L	171	182	184	174	172	170 JH	172	164	189	196	193	192 X	209	212	218	196	202	209 J	212	205
pH - Field Collected	SU	6.46	5.50	6.30	6.33	6.21	6.09	6.20	6.21	6.13	5.97	6.14	4.82	5.86	5.96	6.07	6.19	6.36	6.20	5.51	6
Total dissolved solids	mg/L	594	585	611	581	572	555 JH	463	576	549	525	551	588	569	664	586	597	573	677	574	560
Appendix IV - Assessment M	onitoring																				
Antimony	mg/L	0.000240 U	0.000240 U	0.000240 U	0.00120 U	0.000240 U	0.000240 U	0.000240 U	0.000240 U	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Arsenic	mg/L	0.000911 J	0.000730 J	0.000556 J	0.00123 U	0.000476 J	0.000490 J	0.000519 J	0.000246 U	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR NR
Barium	mg/L	0.00768	0.00451	0.00392 J	0.00410 J	0.00320 J	0.00324 J	0.00275 BJ	0.000484 U	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Beryllium	mg/L	0.000131 U	0.000131 U	0.000131 U	0.000654 U	0.000131 U	0.000131 U	0.000131 U	0.000131 U	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	. NR
Cadmium	mg/L	0.000147 U	0.000147 U	0.000147 U	0.000734 U	0.000147 U	0.000147 U	0.000147 U	0.000147 U	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Chromium	mg/L	0.000525 U	0.000905 J	0.000525 U	0.00262 U	0.000867 J	0.000637 J	0.000961 J	0.000525 U	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Cobalt	mg/L	0.000998 J	0.000952 J	0.000851 J	0.000859 J	0.000745 J	0.000856 J	0.000889 J	0.0000699 U	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Fluoride	mg/L	0.0360 U	0.294 JH	0.332	0.188	0.231 JH	0.157 JH	0.224 JH	0.0360 U	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	. NR
Lead	mg/L	0.000186 J	0.000152 U	0.000152 U	0.000758 U	0.000152 U	0.000152 U	0.000152 U	0.000152 U	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Lithium	mg/L	0.0173 J	0.0146 J	0.00238 U	0.0152 J	0.0173 J	0.0181 J	0.0252	0.0208	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Mercury	mg/L	0.0000263 UX	0.0000263 U	0.0000263 U	0.0000263 U	0.0000263 U	0.0000263 U	0.0000540 J	0.0000263 U	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR NR
Molybdenum	mg/L	0.000398 J	0.000317 J	0.000255 U	0.00128 U	0.000265 J	0.000255 U	0.000273 J	0.000255 U	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Selenium	mg/L	0.000512 J	0.000550 J	0.000495 J	0.00227 U	0.000468 J	0.000468 J	0.000454 U	0.000454 U	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Thallium	mg/L	0.000332 U	0.000332 U	0.000332 U	0.00166 U	0.000332 U	0.000332 U	0.000332 U	0.000332 U	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR NR
Radium-226	pCi/L	0.981 ± 0.400	1.16 ± 0.408	0.530 ± 0.284	0.231 ± 0.174	0.258 ± 0.175	0.286 ± 0.247	1.05 ± 0.361	0.531 ± 0.276	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	. NR
Radium-228	pCi/L	0.429 ± 1.56	2.07 ± 1.22	-0.102 ± 1.07 U	0.408 ± 0.764	0.699 ± 0.761	2.49 ± 1.54	0.26 ± 0.639	1 ± 0.834	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Radium-226/228 Combined	pCi/L	1.41 ± 1.96	3.23 ± 1.628	0.428 ± 0.284	0.639 ± 0.938	0.957 ± 0.936	2.776 ± 1.787	1.31 ± 1	1.531 ± 1.11	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR

NOTES: (A) JKS-63 plugged and abandoned and replaced with JKS-63R on 5/2/19. Sample events 1 through 10 collected from JKS-63 and thereafter from JKS-63R.

(1) Sample not collected due to the well going dry during sampling activities.
(2) Sample not collected due to blockage in the well

(2) Sample not collected due to blockage casing.
 mg/L: Milligrams per Liter.
 SU: Standard Units.
 pCi/L: Picocuries per Liter.
 - : Laboratory did not analyze sample for indicated constituent.
 R: Resample event.

B: Target analyte or common lab contaminant was identified in the method blank.

was identified in the method blank.
D: Sample diluted due to targets detected over highest point of calibration curve or due to matrix interference.
J: Analyte detected above method (sample)
H: Bias in sample result likely to be high.
NR: Analysis of this constituent not required for detection monitoring.
L: Bias in sample result likely to be how

L: Bias in sample result likely to be low.

U: Analyte not detected at laboratory reporting limit (Sample Detection Limit).
 X: Matrix Spike/Matrix Spike Duplicate recoveries were found to be outside of the laboratory control limits.

										JKS-36 D	owngradient										
	Sample Date	12/8/16	2/23/17	3/29/17	5/4/17	6/21/17	7/26/17	8/30/17	10/11/17	4/5/18	10/30/18	4/10/19	10/22/19	4/29/20	10/21/20	4/14/21	10/19/21	4/13/22	10/25/22	04/18/23	10/17/23
	Task	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Event 11	Event 12	Event 13	Event 14	Event 15	Event 16	Event 17	Event 18	Event 19	Event 20
Constituents	Unit	Dec 2016	Feb 2017	Mar 2017	May 2017	Jun 2017	Jul 2017	Aug 2017	Oct 2017	Apr 2018	Oct 2018	Apr 2019	Oct 2019	Apr 2020	Oct 2020	Apr 2021	Oct 2021	Apr 2022	Oct 2022	April 2023	Oct 2023
Appendix III - Detection Moni	toring																				
Boron	mg/L	0.308	0.671	0.748	0.731	0.581	0.625 JH	0.663	0.637	0.625	0.686	0.663	0.632	0.459	0.456 JL	0.436	0.630	0.556	0.431	0.415 JL	0.368 JL
Calcium	mg/L	69.7	165	147	282	247	255 JHX	241	289	281	311 D	315 D	265 D	175	259	268	299	260	173	166	168
Chloride	mg/L	14.5	199 D	37.0	355	364 D	379 JHD	319 D	328	347 X	313	285	274	63.3	319	316	260	295	383	341	0.052 U
Fluoride	mg/L	0.0360 U	0.439 JH	0.330	1.53	1.26	1.37 JH	1.30	1.32	1.95 X	1.47	1.45	1.41	1.18	1.07	1.02	0.018 U	1.71	1.73	1.30	0.517
Sulfate	mg/L	49.2	409 D	271 D	726	731 D	775 JHD	707 D	741	816 X	946	697	756 D	189	890	923	727	769	1080	950	838 J
pH - Field Collected	SU	6.71	4.96	6.98	4.04	3.72	3.80	5.20	3.24	3.48	3.61	3.71	3.66	3.42	3.98	4.29	5.96	6.78	4.41	4.55	6.99
Total dissolved solids	mg/L	368	1010	591	1610	1820	1700 JH	1220	1770	1650	1630	1520	1600	1790	1930	2100	1640	2200	2410	2020	1940 JL
Appendix IV - Assessment Mo	nitoring																				
Antimony	mg/L	0.00120 U	0.000240 U	0.00123 J	0.00120 U	0.000240 U	0.00121 J	0.000240 U	0.000240 U	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Arsenic	mg/L	0.00123 U	0.000588 J	0.00134 J	0.00324 J	0.00276	0.00369	0.00341	0.00372	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Barium	mg/L	0.0988	0.0967	0.139	0.0270	0.0187	0.0207	0.0372	0.0225	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Beryllium	mg/L	0.000654 U	0.00198 J	0.000131 U	0.0259	0.0226	0.0261	0.0212	0.0259	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Cadmium	mg/L	0.00257 J	0.00510	0.000548 J	0.0118	0.0102	0.0117	0.0101	0.0113	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Chromium	mg/L	0.00262 U	0.00608	0.0409	0.0100 J	0.00968	0.0156	0.00792	0.0132	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Cobalt	mg/L	0.000579 J	0.0871	0.00751	0.220	0.186	0.216	0.195	0.215	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Fluoride	mg/L	0.0360 U	0.439 JH	0.330	1.53	1.26	1.37 JH	1.30	1.32	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Lead	mg/L	0.000758 U	0.000152 U	0.000152 U	0.000758 U	0.000164 J	0.000220 J	0.000261 J	0.000152 U	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Lithium	mg/L	0.0123 J	0.119	0.00238 U	0.326	0.340	0.371	0.372	0.379	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Mercury	mg/L	0.000834	0.000289	0.00143	0.00240	0.00244	0.00160	0.00113	0.00226	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Molybdenum	mg/L	0.00397 J	0.00261	0.0686	0.00183 J	0.000704 J	0.000791 J	0.00151 J	0.000255 U	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Selenium	mg/L	0.0334	0.0448	0.0313	0.0673	0.0616	0.0697	0.0633	0.0663	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Thallium	mg/L	0.00166 U	0.000487 J	0.000332 U	0.00166 U	0.000876 J	0.00114 J	0.000889 J	0.000332 U	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Radium-226	pCi/L	0.0888 ± 0.151	1.12 ± 0.342	0.453 ± 0.276	4.85 ± 0.656	4.02 ± 0.608	4.32 ± 0.667	6.28 ± 0.845	3.6 ± 0.600	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Radium-228	pCi/L	2.14 ± 1.02	2.17 ± 0.979	0.166 ± 0.861 U	4.28 ± 1.19	3.44 ± 1.04	3.95 ± 1.79	2.63 ± 0.928	3.3 ± 1.33	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Radium-226/228 Combined	pCi/L	2.2288 ± 1.171	3.29 ± 1.321	0.619 ± 1.137 U	9.13 ± 1.846	7.46 ± 1.648	8.27 ± 2.457	8.91 ± 1.773	6.9 ± 1.93	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR

NOTES: (A) JKS-63 plugged and abandoned and replaced with JKS-63R on 5/2/19. Sample events 1 through 10 collected from JKS-63 and thereafter from JKS-63R.

(1) Sample not collected due to the well going dry during sampling activities.
(2) Sample not collected due to blockage in the well

(2) Sample not collected due to blockage casing.
 mg/L: Willigrams per Liter.
 SU: Standard Units.
 pCi/L: Picocuries per Liter.
 -: Laboratory did not analyze sample for indicated constituent.
 R: Resample event.

R: Resample event.
B: Target analyte or common lab contaminant was identified in the method blank.
D: Sample diluted due to targets detected over highest point of calibration curve or due to matrix interference.
D: Analyte detected above method (sample)
H: Bias in sample result likely to be high.
NR: Analysis of this constituent not required for detection monitoring.
L: Bias in sample result likely to be how

L: Bias in sample result likely to be low.

U: Analyte not detected at laboratory reporting limit (Sample Detection Limit).
 X: Matrix Spike/Matrix Spike Duplicate recoveries were found to be outside of the laboratory control limits.

Page 6 of 8

											JKS-61	Downgradie	nt											
	Sample Date	12/7/16	2/23/17	3/29/17	5/3/17	6/21/17	7/26/17	8/30/17	10/11/17	4/5/18	10/31/18	2/5/19	4/10/19	10/22/19	2/25/20	4/29/20	10/21/20	4/13/21	10/19/21	2/22/22	4/13/22	10/25/22	04/19/23	10/17/23
	Task	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9		Event 10R			Event 12R	Event 13				Event 16R				Event 20
Constituents	Unit	Dec 2016	Feb 2017	Mar 2017	May 2017	Jun 2017	Jul 2017	Aug 2017	Oct 2017	Apr 2018	Oct 2018	Feb 2019	Apr 2019	Oct 2019	Feb 2020	Apr 2020	Oct 2020	Apr 2021	Oct 2021	Feb 2022	Apr 2022	Oct 2022	April 2023	Oct 2023
Appendix III - Detection Mor	nitoring																							
Boron	mg/L	1.07	1.29	1.15	1.18	0.960		0.994	0.997	1.09	3.25	3.12	2.72	2.90	2.30	1.82	1.82 JL	1.57	1.95		1.83	1.33	1.06	1.01 JL
Calcium	mg/L	134	95.9	155	113	115	107 JH	105	135	5 171	197 D		176	168 D		154	172	122	130		144	104	71.2	82.4
Chloride	mg/L	198	158	162	168	193		218 D	210		213		253	248		312	281	204	207		248	201	150	0.052 U
Fluoride	mg/L	0.393	0.503	0.522	0.643 JH	0.459 JH	0.479 JH	0.0960 U	0.0360 U	0.406 J	0.430 J		0.403 J	0.480 J		0.494	0.366	0.216	0.018 U		0.363	0.018 U	0.355	0.445
Sulfate	mg/L	401 D	377 JD	382 D	388	408 D	390 JHD	385 D	401	. 562	548		619	548 D		604	533	393	397		420	407	331	274 J
pH - Field Collected	SU	6.72	6.51	6.48	6.68	6.53	6.55	7.40	6.27	6.42	6.38	6.37	6.52	5.61	. 5.7	6.27	6.57	6.40	6.52	6.58	6.83	7.10	5.96	7.51
Total dissolved solids	mg/L	1400	1180	1190	1260	1430	1290 JH	1170	1280	1620	514	1620	1650	1790		1870	2000	1320	1380		1410	1280	1090	993 JL
Appendix IV - Assessment M	onitoring																							
Antimony	mg/L	0.00120 U	0.000240 U	0.000240 U	0.00120 U	0.000240 U	0.000240 U	0.000240 U	0.000240 U	J NR	NR	NR	NR	NR	NR NR	NR	NR	NR	NR	. NR	NR	NR	NR	NR
Arsenic	mg/L	0.00123 U	0.000768 J	0.000709 J	0.00123 U	0.000563 J	0.000622 J	0.000569 J	0.000246 U	J NR	NR	NR	NR	NR	NR NR	NR	NR	NR	NR	. NR	NR	NR	NR	NR
Barium	mg/L	0.0364	0.0186	0.0173	0.0178 J	0.0148	0.0167	0.0153	0.0162	2 NR	NR	NR	NR	NR	R NR	NR	NR	NR	NR	. NR	NR	NR	NR	NR
Beryllium	mg/L	0.000654 U	0.000131 U	0.000131 U	0.000654 U	0.000131 U	0.000131 U	0.000131 U	0.000131 U	J NR	NR	NR	NR	NR	R NR	NR	NR	NR	NR	. NR	NR	NR	NR	NR
Cadmium	mg/L	0.000734 U	0.000147 U	0.000147 U	0.000734 U	0.000147 U	0.000147 U	0.000147 U	0.000147 U	J NR	NR	NR	NR	NR	NR NR	NR	NR	NR	NR	. NR	NR	NR	NR	NR
Chromium	mg/L	0.00262 U	0.000911 J	0.000525 U	0.00262 U	0.000525 U	0.000604 J	0.000808 J	0.000525 U	J NR	NR	NR	NR	NR	NR NR	NR	NR		NR		NR	NR	NR	NR
Cobalt	mg/L	0.000719 J	0.000725 J	0.000769 J	0.000779 J	0.000805 J	0.000765 J	0.000855 J	0.0000699 U	J NR	NR	NR	NR	NR	NR NR	NR	NR	NR	NR	. NR	NR	NR	NR	NR
Fluoride	mg/L	0.393	0.503	0.522	0.643 JH	0.459 JH	0.479 JH	0.0960 U	0.0360 U	I NR	NR	NR	NR	NR	NR NR	NR	NR	NR	NR	. NR	NR	NR	NR	NR
Lead	mg/L	0.000758 U	0.000152 U	0.000152 U	0.000758 U	0.000152 U	0.000152 U	0.000152 U	0.000152 U	J NR	NR	NR	NR	NR	NR NR	NR	NR	NR	NR	. NR	NR	NR	NR	NR
Lithium	mg/L	0.000476 U	0.0158 J	0.00238 U	0.0120 J	0.0342	0.0336	0.0443	0.0335	5 NR	NR	NR	NR	NR	R NR	NR	NR	NR	NR	. NR	NR	NR	NR	NR
Mercury	mg/L	0.0000263 U	0.0000263 U	0.0000263 U	0.0000263 U	0.0000263 U	0.0000263 U	0.0000263 U	0.0000263 U	J NR	NR	NR	NR	NR	NR NR	NR	NR	NR	NR	. NR	NR	NR	NR	NR
Molybdenum	mg/L	0.00165 J	0.00129 J	0.000984 J	0.00128 U	0.000776 J	0.000742 J	0.000712 J	0.000255 U	J NR	NR	NR	NR	NR	R NR	NR	NR	NR	NR	. NR	NR	NR	NR	NR
Selenium	mg/L	0.00227 U	0.00123 J	0.00123 J	0.00227 U	0.00185 J	0.00154 J	0.00172 J	0.000454 U	J NR	NR	NR	NR	NR	NR NR	NR	NR	NR	NR	. NR	NR	NR	NR	NR
Thallium	mg/L	0.00166 U	0.000332 U	0.000332 U	0.00166 U	0.000332 U	0.000332 U	0.000332 U	0.000332 U	J NR	NR	NR	NR	NR	NR NR	NR	NR	NR	NR	. NR	NR	NR	NR	NR
Radium-226	pCi/L	1.15 ± 0.429	0.723 ± 0.306	0.256 ± 0.237 U	0.237 ± 0.193	0.398 ± 0.239	0.511 ± 0.223	0.821 ± 0.324	0.485 ± 0.212	2 NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Radium-228	pCi/L	2.79 ± 1.44	0.358 ± 1.06	0.761 ± 0.688 U	-0.064 ± 0.607	2.03 ± 0.997	0.491 ± 0.813	0.247 ± 0.710	1.64 ± 1.08	8 NR	NR	NR	NR	NR	R NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Radium-226/228 Combined	pCi/L	3.94 ± 1.869	1.081 ± 1.366	1.017 ± 0.925 U	0.173 ± 0.800	2.428 ± 1.236	1.002 ± 1.036	1.068 ± 1.034	2.125 ± 1.292	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR

NOTES: (A) JKS-63 plugged and abandoned and replaced with JKS-63R on 5/2/19. Sample events 1 through 10 collected from JKS-63 and thereafter from JKS-63R.

(1) Sample not collected due to the well going dry during sampling activities.(2) Sample not collected due to blockage in the well

(2) Sample not collected due to blockage casing.
mg/L: Willigrams per Liter.
SU: Standard Units.
pCi/L: Picocuries per Liter.
-- : Laboratory did not analyze sample for indicated constituent.
R: Resample event.

R: Resample event.
B: Target analyte or common lab contaminant was identified in the method blank.
D: Sample diluted due to targets detected over highest point of calibration curve or due to matrix interference.
Analyte detected above method (sample)
H: Bias in sample result likely to be high.
NR: Analysis of this constituent not required for detection monitoring.
Bias in sample result likely to be low.

L: Bias in sample result likely to be low.

U: Analyte not detected at laboratory reporting limit (Sample Detection Limit).
 X: Matrix Spike/Matrix Spike Duplicate recoveries were found to be outside of the laboratory control limits.

	Γ								ЈК	S-62 Downgra	adient											JKS-72 Downgradient
	Sample Date	12/8/16	2/23/17	3/29/17	5/4/17	6/21/17	7/26/17	8/30/17	10/11/17	4/5/18	10/30/18	4/10/19	10/23/19	4/29/20	11/17/20	4/14/21	10/19/21	4/13/22				10/17/23
	Task	Event 1	Event 2	Event 3	Event 4	Event 5	Event 6	Event 7	Event 8	Event 9	Event 10	Event 11	Event 12	Event 13	Event 14	Event 15	Event 16	Event 17	Event 18	Event 19	Event 20	Event 1
Constituents	Unit	Dec 2016	Feb 2017	Mar 2017	May 2017	Jun 2017	Jul 2017	Aug 2017	Oct 2017	Apr 2018	Oct 2018	Apr 2019	Oct 2019	Apr 2020	Nov 2020	Apr 2021	Oct 2021	Apr 2022	Oct 2022	April 2023	Oct 2023	Oct 2023
Appendix III - Detection Monit	toring																					
Boron	mg/L	0.549	0.481	0.597	0.601	0.501	0.485 JH	0.485	0.549	0.522	0.559	0.612	0.528		0.537	0.541	0.558	0.874	(1)	(1)	(1) 4.44 JL
Calcium	mg/L	155	152	220	156	150	134 JH	150	158	160	161 D	205 D	151 D	122	144	149	159	25.1	(1)	(1)	(1	, 388
Chloride	mg/L	257 D	279 DX	279 D	278	291 D	260 JHD	281 D	241	312	279	336	276	284	284	279	270	16.2	(1)	(1)	(1) 351
Fluoride	mg/L	0.246	0.362 JH	0.418	0.388	0.366 JH	0.342 JH	0.233 JH	0.0360 U	0.353 J	0.309 J	0.356 J	0.380 J	0.331	0.295	0.258	0.018 U	0.183	(1)	(1)	(1) 0.018 U
Sulfate	mg/L	190	187	193	188	184	181 JH	188 D	175	200	183	191	183	190	212	191	180	202	(1)	(1)	(1) 1710 J
pH - Field Collected	SU	6.79	6.67	6.63	6.71	6.68	6.82	7.51	6.52	6.72	6.58	6.29	5.43	6.54	6.55	6.61	6.67	6.89	(1)	(1)	(1) 7.88
Total dissolved solids	mg/L	1120	1170	1140	1100	1080	976 JH	1080	1080	1110	956	1190	1160	1100	1040	1100	1070	573	(1)	(1)	(1) 3150 JL
Appendix IV - Assessment Mo	nitoring																					
Antimony	mg/L	0.000240 U	0.000240 U	0.000240 U	0.00120 U	0.000240 U	0.000240 U	0.000240 U	0.000240 U	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NF	R 0.002 UJL
Arsenic	mg/L	0.000684 J	0.000293 J	0.000246 U	0.00123 U	0.000254 J	0.000246 U	0.000246 U	0.000246 U	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NF	۵.002 J
Barium	mg/L	0.0825	0.0786	0.0813	0.0747	0.0734	0.0737	0.0708	0.0793	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NF	R 0.054 JL
Beryllium	mg/L	0.000131 U	0.000131 U	0.000131 U	0.000654 U	0.000131 U	0.000131 U	0.000131 U	0.000131 U	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NF	R 0.0006 JL
Cadmium	mg/L	0.000147 U	0.000147 U	0.000147 U	0.000734 U	0.000147 U	0.000147 U	0.000147 U	0.000147 U	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NE	R 0.003 JL
Chromium	mg/L	0.00186 J	0.00109 J	0.000525 U	0.00262 U	0.000551 J	0.000691 J	0.00107 J	0.000525 U	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NF	R 0.001 JL
Cobalt	mg/L	0.00110 J	0.000198 J	0.000744 J	0.000350 U	0.000278 J	0.000211 J	0.0000699 U	0.0000699 U	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NF	R 0.012L
Fluoride	mg/L	0.246	0.362 JH	0.418	0.388	0.366 JH	0.342 JH	0.233 JH	0.0360 U	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NF	R 0.018 U
Lead	mg/L	0.000588 J	0.000152 U	0.000152 U	0.000758 U	0.000154 J	0.000152 U	0.000152 U	0.000152 U	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NE	C 0.008 J
Lithium	mg/L	0.000476 U	0.0129 J	0.00238 U	0.00134 J	0.0353	0.0305	0.0457	0.0263	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NF	R 160 J
Mercury	mg/L	0.0000540 J	0.0000263 U	0.0000263 U	0.0000263 U	0.0000263 U	0.0000263 U	0.0000263 U	0.0000263 U	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NF	R 0.0001 U
Molybdenum	mg/L	0.000414 J	0.000259 J	0.000255 U	0.00128 U	0.000255 U	0.000255 U	0.000255 U	0.000255 U	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NF	0.006 J
Selenium	mg/L	0.222	0.192	0.196	0.195	0.185	0.181	0.191	0.208	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NF	٥.044
Thallium	mg/L	0.000332 U	0.000332 U	0.000332 U	0.00166 U	0.000332 U	0.000332 U	0.000332 U	0.000332 U	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NF	R 0.0009 U
Radium-226	pCi/L	0.485 ± 0.229	0.402 ± 0.220	0.665 ± 0.321	0.0997 ± 0.153	0.425 ± 0.233	0.399 ± 0.220	2.02 ± 0.489	0.669 ± 0.279	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NF	2.14 ± 0.483 JL
Radium-228	pCi/L	2.15 ± 1.38	1.53 ± 1.28 U	0.305 ± 1.10 U	-0.138 ± 0.656	0.66 ± 0.760	1.07 ± 0.949	0.673 ± 0.821	0.371 ± 0.631	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NF	3.59 ± 1.36 JL
Radium-226/228 Combined	pCi/L	2.635 ± 1.609	1.932 ± 1.5 U	0.97 ± 1.421 U	-0.038 ± 0.809	1.085 ± 0.993	1.469 ± 1.169	2.693 ± 1.31	1.04 ± 0.91	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NF	5.73 ± 1.44 JL

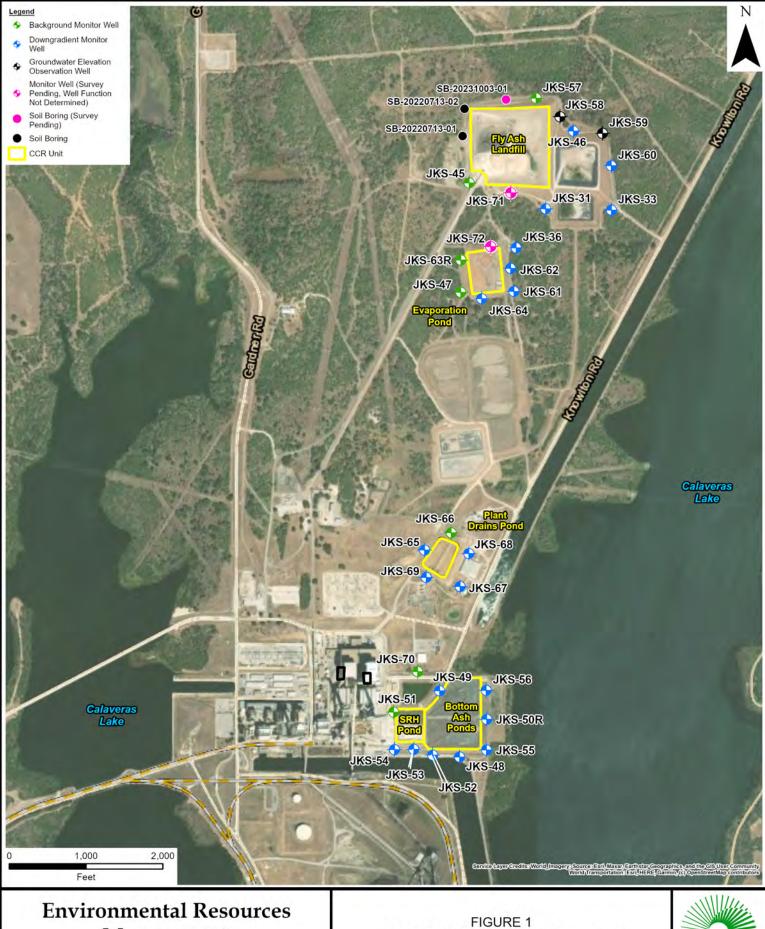
NOTES:
(A) JKS-63 plugged and abandoned and replaced with JKS-63R on 5/2/19. Sample events 1 through 10 collected from JKS-63 and thereafter from JKS-63R.
(1) Sample not collected due to the well going dry during sampling activities.
(2) Sample not collected due to blockage in the well casino.

(2) Sample not collected due to blockage casing.
mg/L: Willigrams per Liter.
SU: Standard Units.
pCi/L: Picocuries per Liter.
-- : Laboratory did not analyze sample for indicated constituent.
R: Resample event.

- R: Resample event.
 B: Target analyte or common lab contaminant was identified in the method blank.
 D: Sample diluted due to targets detected over highest point of calibration curve or due to matrix interference.
 J: Analyte detected above method (sample)
 H: Bias in sample result likely to be high.
 NR: Analysis of this constituent not required for detection monitoring.
 I: Bias in sample result likely to be low

L: Bias in sample result likely to be low.

U: Analyte not detected at laboratory reporting limit (Sample Detection Limit).
 X: Matrix Spike/Matrix Spike Duplicate recoveries were found to be outside of the laboratory control limits.

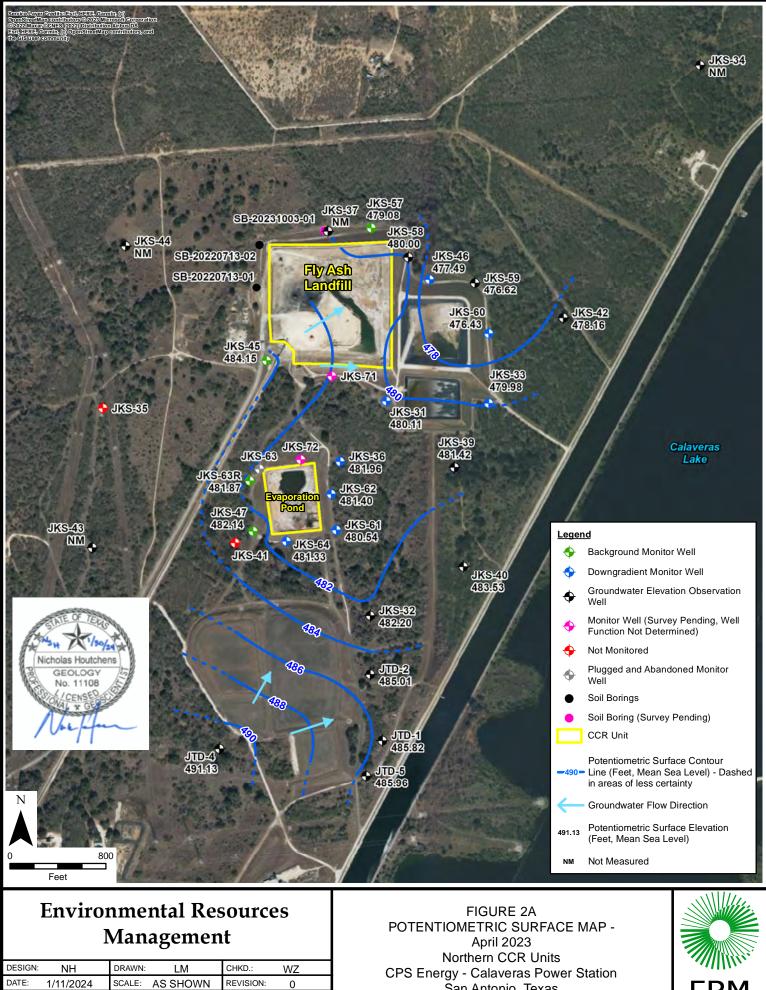


FIGURES

FIGURE 1 CCR WELL NETWORK LOCATION MAP

FIGURE 2A POTENTIOMETRIC SURFACE MAP – APRIL 2023

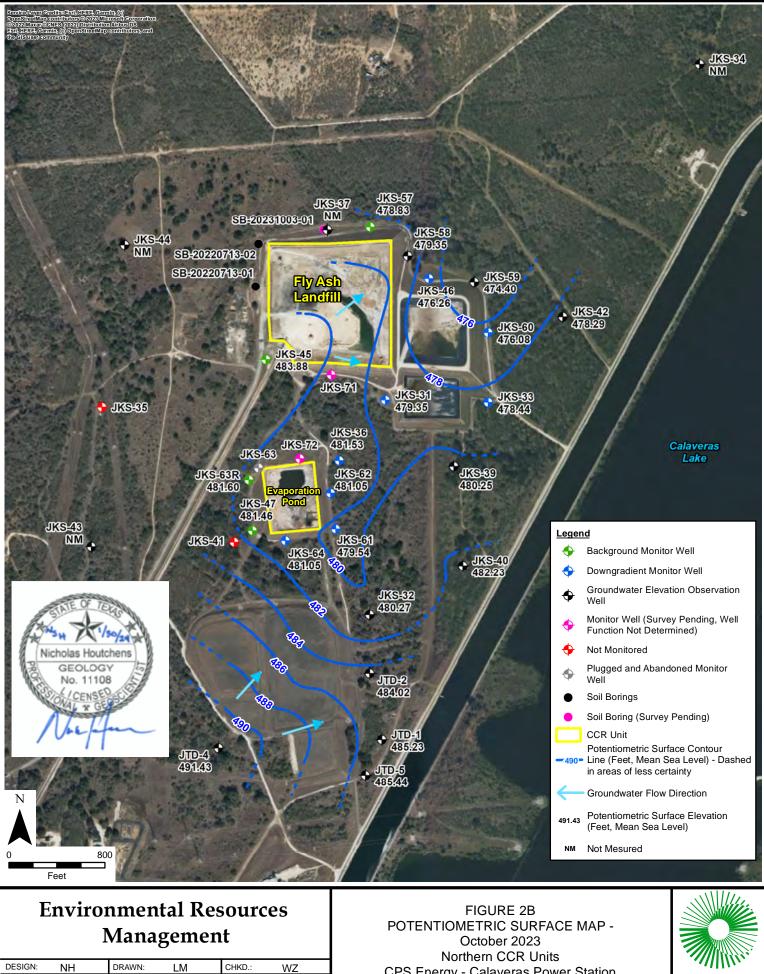
FIGURE 2A POTENTIOMETRIC SURFACE MAP – OCTOBER 2023



Management

DESIGN:	WZ	DRAWN:	EFC	CHKD.:	WZ
DATE:	1/9/2024	SCALE:	AS SHOWN	REVISION:	0

CCR WELL NETWORK LOCATION MAP **CPS Energy - Calaveras Power Station** San Antonio, Texas



(:\GIS_CAD\MXD\2023gwmon)

San Antonio, Texas

DATE: SCALE: AS SHOWN 1/11/2024 V:\GIS_CAD\MXD\2023gwmon\ Fig2B_0636109_CCR_NorthernPot_Oct2023.mxd

REVISION:

0

CPS Energy - Calaveras Power Station San Antonio, Texas

APPENDIX A LABORATORY DATA PACKAGES

JANUARY 2024

Data Usability Summary Sampling Event/April 2023

CPS Energy Calaveras Power Station Coal Combustion Residuals (CCR) Units San Antonio, Texas

This data usability summary (DUS) was prepared in general accordance with the following key documents:

- 1) Groundwater Sampling and Analysis Program, CPS Energy, Calaveras Power Station (ERM, January 2022);
- 2) Texas Commission on Environmental Quality's (TCEQ's) *Review and Reporting of COC Concentration Data Under TRRP* (RG-366/TRRP-13, May 2010); and
- 3) Environmental Protection Agency's (EPA's) *National Functional Guidelines for Inorganic Superfund Methods Data Review* (EPA-540-R-2017-001, January 2017).

Environmental Resources Management (ERM) reviewed four laboratory analytical data packages (2304292, 2304293, 2304294, and 2304295) from San Antonio Testing Laboratory (SATL) of San Antonio, Texas for the analysis of ground water samples collected on 18 April to 19 April 2023 at the CPS Energy Calaveras Power Station in San Antonio, Texas. Analytes Radium-226, Radium-228, and Lithium were subbed to Eurofins of St. Louis by SATL for analysis. Data were reviewed to assess conformance with the requirements of the above-referenced documents.

SATL and Eurofins are NELAC-accredited under the Texas Laboratory Accreditation Program for the matrices, analytes, and methods of analysis requested on the chain-of-custody documentation. SATL and Eurofins National Environmental Laboratory Accreditation Program (NELAP) certificates applicable to the period during which the laboratories generated the data in these reports is referenced in the laboratory reports.

Intended Use of Data: To provide concentration data on Appendix III Coal Combustion Residuals (CCR) Rule parameters in ground water at the CPS Energy Calaveras Facility.

Analyses requested for the laboratory packages include the following:

- EPA 300.0 Inorganic Anions (Chloride, Fluoride, Sulfate) by Ion Chromatography (IC)
- EPA 6010B Total Metals by Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES)
- EPA 903.0 and 904.0 Radium-226 and Radium-228 (GFPC)
- EPA 6010A Total Metals (Lithium) ICP
- SW846 7470A Mercury (CVAA)

Data were reviewed and validated as described in the above-referenced documents, and the results of the review/validation are discussed in this Data Usability Summary (DUS). The following laboratory submittals and field data were examined:

- The reportable data;
- The laboratory review checklist (LRC) and associated exception report (ER); and
- The Quality Assurance/Quality Control (QA/QC) data supplied by the laboratory.

The results of supporting QC analyses are summarized on the LRC and ER, which are included in this review. The LRC, associated ER, QA/QC data, and reportable data covered by this review are included in the laboratory reports.

The Laboratory Data Package Cover Pages and Laboratory Review Checklists provided in the analytical data packages are outdated and inconsistent with current TRRP-13 guidance (May 2010). It is highly recommended that required items in the current TRRP-13 guidance be followed for laboratory data packages generated to satisfy corrective action program requirements. Data were not qualified based on this deficiency.

Introduction

Twenty-five (25) groundwater samples, three (3) duplicate samples, two (2) field blanks, and one (1) equipment blank were analyzed for select metals and anions. Six (6) groundwater samples, one duplicate sample, and one field blank was also analyzed for Radium and Lithium. Table 1 lists the sample identifications cross-referenced to laboratory identifications.

Project Data Quality Objectives (DQO)

The quantitative project DQO limits specified in the *Groundwater Sampling and Analysis Program* were utilized as follows:

- Recovery (%R)
 - Spike samples 75-125%
 - Non-spike samples 70-130%
- Relative Percent Difference (RPD) <20%

Data were qualified in accordance with the TCEQ's TRRP-13 guidance document, including data qualifier codes and data qualifier code definitions.

Data Review / Validation Results

Analytical Results

Ground water analytical results were reported in milligrams per liter (mg/L) for metals and anions. Analytical results from Eurofins was reported in micrograms per liter (μ g/L) for metals and in picocurries per liter (pCi/L) for radiological analysis. Non-detect results are reported as less than the value of the sample detection limits (SDLs). The method quantitation limits (MQLs) are also reported.

Preservation and Holding Times

The samples were evaluated for agreement with the chain-of-custody forms. The samples were received in the appropriate containers and in good condition with the paperwork properly completed.

Sample receipt temperature of the cooler at SATL were within or less than the acceptance criteria of 4 +/- 2 degrees Celsius. Sample receipt temperature for lab reports 2304292, 2304293, 2304294, and 2304295 were 2.2°C, 2.2°C, 0.4°C, and 1.4°C, respectively. No qualifiers were added to the data. Samples were prepared and analyzed within holding times as specified by the methods. The samples were preserved in the field as specified by the methods, with the following exception.

For radium analysis, the reference method required samples to be preserved to a pH of <2. If samples are collected without preservation, they must be received by the laboratory within 5 days for preservation according to Method 904 specifications. All the samples in lab report 2304295 and one sample, JKS-70-20230419-CCR, in lab report 2304294 was received by the laboratory unpreserved 6-7 days after the samples were collected. The sample was preserved to the appropriate pH in the laboratory; however, the analytical results were still qualified as JL, estimated low, for detected results and UJL, non-detect and estimated low for non-detect results for radium.

Calibrations

According to the LRC, initial calibrations, continuing calibrations, and calibration verifications data met method requirements for metals and anions, as applicable.

Mass Spectral Tuning

As documented in the LRC, mass spectrometry instrument performance tunes were either not applicable (appropriate compound for the method) or met specific requirements for the requested analytical methods (ion abundance data within limits).

Internal Standards

As documented in the LRC, internal standard area counts and retention times were within or not applicable for the requested analytical methods.

Percent Yield

Ba and Y Carrier percent yields for radium analysis were within laboratory acceptance limits.

Blanks

Metals and anions were not detected in the method blanks.

Laboratory Control Samples

Laboratory control sample and duplicate (LCS/LCSD) precision and accuracy results (*i.e.*, percent recoveries and RPDs) for all analyses were within project DQO acceptance limits, with the following exception.

In laboratory packages 2304294 and 2304295, the LCS percent recovery in prep batch 610073 were above DQO acceptance limits for Radium-228 (135%). Affected samples in batch 610073 (all samples in laboratory package 2304295 and JKS-70-20230419-CCR) with detected results would typically be qualified as JH, estimated with high bias. However, as the samples were previously qualified as JL for insufficient preservation, the affected sample results were qualified as J, estimated.

Matrix Spike/Matrix Spike Duplicates

Matrix spike/matrix spike duplicate (MS/MSD) precision and accuracy results (*i.e.*, percent recoveries and RPDs) using project samples were within project DQO acceptance limits, with the following exceptions.

In laboratory packages 2304292 and 2304293, matrix spike/matrix spike duplicate (MS/MSD) analysis was performed on project samples JKS-45-20230418-CCR for anions and JKS-36-20230418-CCR and JKS-60-20230419-CCR for metals. The MS and MSD had recoveries above laboratory and DQO limits for chloride and below laboratory and DQO limits for boron. The parent concentration for chloride, calcium, and sulfate were greater than four times the amount spiked into it; therefore, no qualifiers were required for high MS/MSD recoveries for chloride or for NR-flagged recoveries for calcium and sulfate. The MS and MSD recoveries for metals were run on two project-related samples in the same batch. The MS/MSD recoveries for boron were below DQO limits associated with sample JKS-36-20230418-CCR; however, MS/MSD recoveries were within DQO limits associated with sample JKS-36-20230418-CCR, was qualified as estimated with low bias (JL) for boron due to low MS/MSD recoveries.

In laboratory packages 2304294 and 2304295, matrix spike/matrix spike duplicate (MS/MSD) analysis was performed on project samples JKS-65-20230418-FPDP and JKS-66-20230419-FPDP for anions, JKS-70-20230419-CCR for mercury, JKS-36-20230418-CCR and JKS-60-20230419-CCR for select metals (boron and calcium), and JKS-56-20230419-CCR and FB-003-20230419 for all metals. The MS and MSD had recoveries above DQO limits for chloride, calcium (Batch B317141), and sulfate and below DQO limits for boron and calcium (Batch B317142). The parent concentration for calcium (both batches), and sulfate were greater than four times the amount spiked into it; therefore, no gualifiers were required for high or low MS/MSD recoveries for sulfate and calcium or for NR-flagged recoveries for calcium. In batch B318130 MS/MSD recoveries for chloride using project-related sample JKS-66-20230419-FPDP was higher than DQO acceptance limits and the spiking amount was not greater than four times the amount spiked into it; as such, samples in the batch were qualified as estimated with high bias (JH) for chloride due to high MS/MSD recoveries. The MS and MSD recoveries for metals (boron and calcium) were run on two project-related samples in the same batch. The MS/MSD recoveries for boron were below DQO limits associated with sample JKS-36-20230418-CCR; however, MS/MSD recoveries were within DQO limits associated with sample JKS-60-20230419-CCR in the same batch. As such, only the parent sample, JKS-36-20230418-CCR was qualified as estimated with low bias (JL) for boron due to low MS/MSD recoveries.

Post Digestion Spike

According to the LRC, post digestion spike (PDS) recoveries were within method acceptance limits.

Serial Dilution

According to the LRC, serial dilution (SD) percent differences (%D) were within method acceptance limits.

Laboratory Precision

Laboratory duplicate RPD using project samples were within project DQO acceptance limits, with the following exception.

In laboratory packages 2304294 and 2304295, the laboratory duplicate RPD for arsenic in batch B317142, performed on project sample JKS-56-20230419-CCR, was higher than DQO acceptance limits. The analyte concentration was less than five times the MQL and all affected sample results were less than the value of the MQL; as such, no qualifiers were required.

Field Precision

Three pairs of field precision samples were collected during the April 2023 event (JKS-33-20230419-CCR / DUP-001-20230419; JKS-48-20230419-CCR / DUP-002-20230419; JKS-68-20230418-FPDP / DUP-001-20230418). RPD calculations for detected analytes for each field precision pair are shown in Table 2. All RPD were within DQO limits or had sample concentrations less than two times the value of the MQL; as such, no qualifiers were required.

Field Procedures

Sample collection procedures were in accordance with EPA ground water sampling protocols and the *Ground Water Sampling and Analysis Program*, dated January 2022.

SUMMARY

Ground water analytical results are useable for the purpose of provide concentration data on Appendix III Coal Combustion Residuals (CCR) Rule parameters in ground water at the CPS Energy Calaveras Power Station. Table 2 lists qualified data. Tables

TABLE 1 Sample Cross-Reference

CPS Energy Calaveras Power Station

Lab Report	Lab Identification	Field Identification	Sample Date	Sample Type
2304292	2304292-01	JKS-36-20230418-CCR	4/18/2023	Groundwater
2304292	2304292-02	JKS-47-20230419-CCR	4/19/2023	Groundwater
2304292	2304292-03	JKS-61-20230419-CCR	4/19/2023	Groundwater
2304292	2304292-04	JKS-63R-20230418-CCR	4/18/2023	Groundwater
2304292	2304292-05	JKS-64-20230419-CCR	4/19/2023	Groundwater
2304292	2304292-06	EB-001-20230419	4/19/2023	Equipment Blank
2304293	2304293-01	JKS-31-20230418-CCR	4/18/2023	Groundwater
2304293	2304293-02	JKS-33-20230419-CCR	4/19/2023	Groundwater
2304293	2304293-03	JKS-45-20230418-CCR	4/18/2023	Groundwater
2304293	2304293-04	JKS-46-20230418-CCR	4/18/2023	Groundwater
2304293	2304293-05	JKS-60-20230419-CCR	4/19/2023	Groundwater
2304293	2304293-06	DUP-001-20230419	4/19/2023	Duplicate Sample
2304293	2304293-07	FB-001-20230419	4/19/2023	Field Blank
2304294	2304294-01	JKS-48-20230419-CCR	4/19/2023	Groundwater
2304294	2304294-02	JKS-49-20230418-CCR	4/18/2023	Groundwater
2304294	2304294-03	JKS-50R-20230418-CCR	4/18/2023	Groundwater
2304294	2304294-04	JKS-51-20230419-CCR	4/19/2023	Groundwater
2304294	2304294-05	JKS-52-20230419-CCR	4/19/2023	Groundwater
2304294	2304294-06	JKS-53-20230419-CCR	4/19/2023	Groundwater
2304294	2304294-07	JKS-54-20230419-CCR	4/19/2023	Groundwater
2304294	2304294-08	JKS-55-20230418-CCR	4/18/2023	Groundwater
2304294	2304294-09	JKS-56-20230419-CCR	4/19/2023	Groundwater
2304294	2304294-10	JKS-70-20230419-CCR	4/19/2023	Groundwater
2304294	2304294-11	DUP-002-20230419	4/19/2023	Duplicate Sample
2304294	2304294-12	FB-002-20230419	4/19/2023	Field Blank
2304295	2304295-01	JKS-65-20230418-FPDP	4/18/2023	Groundwater
2304295	2304295-02	JKS-66-20230419-FPDP	4/19/2023	Groundwater
2304295	2304295-03	JKS-67-20230418-FPDP	4/18/2023	Groundwater
2304295	2304295-04	JKS-68-20230418-FPDP	4/18/2023	Groundwater
2304295	2304295-05	JKS-69-20230418-FPDP	4/18/2023	Groundwater
2304295	2304295-06	DUP-001-20230418	4/18/2023	Duplicate Sample
2304295	2304295-07	FB-003-20230419	4/19/2023	Field Blank

TABLE 2 Data Usability Qualifiers

CPS Energy Calaveras Power Station

Lab Report		Parameter	Qualification	Rationale
2304292	JKS-36-20230418-CCR	Boron	JL	Low MS/MSD Recovery
2304294	JKS-70-20230419-CCR	Arsenic	JH	High Field Precision RPD
2304294	JKS-48-20230419-CCR	Chloride	JH	High MS/MSD Recovery
2304294	JKS-49-20230418-CCR	Chloride	JH	High MS/MSD Recovery
2304294	JKS-50R-20230418-CCR	Chloride	JH	High MS/MSD Recovery
2304294	JKS-51-20230419-CCR	Chloride	JH	High MS/MSD Recovery
2304294	JKS-52-20230419-CCR	Chloride	JH	High MS/MSD Recovery
2304294	JKS-53-20230419-CCR	Chloride	JH	High MS/MSD Recovery
2304294	JKS-54-20230419-CCR	Chloride	JH	High MS/MSD Recovery
2304294	JKS-55-20230418-CCR	Chloride	JH	High MS/MSD Recovery
2304294	JKS-56-20230419-CCR	Chloride	JH	High MS/MSD Recovery
2304294	JKS-70-20230419-CCR	Chloride	JH	High MS/MSD Recovery
2304294	DUP-002-20230419	Chloride	JH	High MS/MSD Recovery
2304295	JKS-65-20230418-FPDP	Chloride	JH	High MS/MSD Recovery
2304295	JKS-66-20230419-FPDP	Chloride	JH	High MS/MSD Recovery
2304295	JKS-67-20230418-FPDP	Chloride	JH	High MS/MSD Recovery
2304295	JKS-68-20230418-FPDP	Chloride	JH	High MS/MSD Recovery
2304295	JKS-69-20230418-FPDP	Chloride	JH	High MS/MSD Recovery
2304295	DUP-001-20230418	Chloride	JH	High MS/MSD Recovery
2304295	JKS-65-20230418-FPDP	Radium-226	JL	Outside Preservation Holding Time
2304295	JKS-66-20230419-FPDP	Radium-226	JL	Outside Preservation Holding Time
2304295	JKS-67-20230418-FPDP	Radium-226	JL	Outside Preservation Holding Time
2304295	JKS-68-20230418-FPDP	Radium-226	UJL	Outside Preservation Holding Time
2304295	JKS-69-20230418-FPDP	Radium-226	JL	Outside Preservation Holding Time
2304295	DUP-001-20230418	Radium-226	JL	Outside Preservation Holding Time
2304295	FB-003-20230419	Radium-226	UJL	Outside Preservation Holding Time
2304294	JKS-70-20230419-CCR	Radium-226	JL	Outside Preservation Holding Time
2304295	JKS-65-20230418-FPDP	Radium-228	J	Outside Preservation Holding Time and High LCS
2304295	JKS-66-20230419-FPDP	Radium-228	J	Outside Preservation Holding Time
2304295	JKS-67-20230418-FPDP	Radium-228	UJL	Outside Preservation Holding Time
2304295	JKS-68-20230418-FPDP	Radium-228	J	Outside Preservation Holding Time and High LCS
2304295	JKS-69-20230418-FPDP	Radium-228	J	Outside Preservation Holding Time and High LCS
2304295	DUP-001-20230418	Radium-228	J	Outside Preservation Holding Time and High LCS
2304295	FB-003-20230419	Radium-228	UJL	Outside Preservation Holding Time
2304294	JKS-70-20230419-CCR	Combined Radium	JL	Outside Preservation Holding Time and High LCS
2304295	JKS-65-20230418-FPDP	Combined Radium	JL	Outside Preservation Holding Time
2304295	JKS-66-20230419-FPDP	Combined Radium	JL	Outside Preservation Holding Time
2304295	JKS-67-20230418-FPDP	Combined Radium	JL	Outside Preservation Holding Time
2304295	JKS-68-20230418-FPDP	Combined Radium	JL	Outside Preservation Holding Time
2304295	JKS-69-20230418-FPDP	Combined Radium	JL	Outside Preservation Holding Time
2304295	DUP-001-20230418	Combined Radium	JL	Outside Preservation Holding Time
2304295	FB-003-20230419	Combined Radium	UJL	Outside Preservation Holding Time
2304294	JKS-70-20230419-CCR	Combined Radium	JL	Outside Preservation Holding Time

Notes:

J = Estimated UJ = Non-detect Estimated

TABLE 3 Field Precision

CPS Energy Calaveras Power Station

Lab Report	Field Duplicate Pair	Paramotor	Sample Result		Duplicate Result		RPD	Qualifier
		TDS	3680		3630		1.37	A
	JKS-33-20230419-	Chloride	732		752		2.70	A
2304293	CCR / DUP-001-	Sulfate	1550		1600		3.17	A
2001270	20230419	Boron	0.988		0.996		0.81	A
		Calcium	376		386		2.62	A
		TDS	1370		1400		2.17	A
		Chloride	434		470		7.96	A
	JKS-48-20230419-	Fluoride	0.964		0.975		1.13	А
2304294	CCR / DUP-002-	Sulfate	182		197		7.92	А
	20230419	Boron	1.93		1.97		2.05	А
		Calcium	118		120		1.68	A
		TDS	4080		3970		2.73	A
		Chloride	861		866		0.58	А
		Fluoride	0.864		0.959		10.42	А
		Sulfate	1290		1230		4.76	A
		Boron	1.29		1.24		3.95	A
		Calcium	244		239		2.07	А
	JKS-68-20230418-	Arsenic	0.002	J	0.0006	U	107.69	A*
2304295	FPDP / DUP-001-	Barium	0.029		0.028		3.51	А
2004275	20230418	Cadmium	0.0008	J	0.001	J	22.22	A*
	20230410	Chromium	0.002	J	0.002	J	0.00	А
		Molybdenum	0.0005	J	0.0004	J	22.22	A*
		Selenium	0.039		0.043		9.76	А
		Radium-226	0.108	U	0.165		41.76	A*
		Radium-228	1.41		0.749		61.23	A*
		Combined Radium-226 and 228	1.51		0.914		49.17	A*

Notes:

RPD - Relative Percent Difference

RPD = (Sample Result - Duplicate Result) x 200 / (Sample Result + Duplicate Result)

Qualifier: A = Acceptable (no qualification necessary)

 A^{\star} = Acceptable data based on sample concentrations less than two times the MQL

J = Estimated

May 03, 2023

Chelsey Vasbinder CPS Energy - Environmental Dept. P.O. Box 1771 San Antonio, TX 78296-1771

SATL Report No.: 2304292 RE: Calaveras Power Station-CCR Units Evaporation Pond

Dear Chelsey Vasbinder

SATL received 6 Sample(s) on 04/20/2023 for analyses identified on the chain of custody. The analyses were performed using methods indicated on the laboratory report. Any deviations observed at sample receiving are notated on the Sample Receipt Checklist and/or Chain of Custody documents attached as part of this analytical report.

Sincerely,

For San Antonio Testing Laboratory, Inc.

Richard Hawk, General Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Appendix A Laboratory Data Package Cover Page

This data package consists of:

\checkmark	This s	ignature page, the laboratory review checklist, and the following reportable data:
\checkmark	R1	Field chain-of-custody documentation;
\checkmark	R2	Sample identification cross-reference;
	R3	 Test reports (analytical data sheets) for each environmental sample that includes: a) Items consistent with NELAC 5.13 or ISO/IEC 17025 Section 5.10 b) dilution factors, c) preparation methods, d) cleanup methods, and e) if required for the project, tentatively identified compounds (TICs).
\checkmark	R4	 Surrogate recovery data including: a) Calculated recovery (%R), and b) The laboratory's surrogate QC limits.
\checkmark	R5	Test reports/summary forms for blank samples;
\checkmark	R6	 Test reports/summary forms for laboratory control samples (LCSs) including: a) LCS spiking amounts, b) Calculated %R for each analyte, and c) The laboratory's LCS QC limits.
	R7	 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: a) Samples associated with the MS/MSD clearly identified, b) MS/MSD spiking amounts, c) Concentration of each MS/MSD analyte measured in the parent and spiked samples, d) Calculated %Rs and relative percent differences (RPDs), and e) The laboratory's MS/MSD QC limits
\checkmark	R8	 Laboratory analytical duplicate (if applicable) recovery and precision: a) the amount of analyte measured in the duplicate, b) the calculated RPD, and c) the laboratory's QC limits for analytical duplicates.
\checkmark	R9	List of method quantitation limits (MQLs) for each analyte for each method and matrix;
\checkmark	R10	Other problems or anomalies.
\checkmark	The E	xception Report for every "No" or "Not Reviewed (NR)" item in laboratory review checklist.

Release Statement: I am responsible for the release of this laboratory data package. This data package has been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Aimee Landon For Marcela Gracia Hawk, President

Richard Hawk, General Manager

Project Name: Laboratory Job Number: Calaveras Power Station-CCR Units Evaporation Pond 2304292

Reviewer Name: Matrix :

RG-366/TRRP-13 December 2002

JA,SG,XE

05/03/23 17:26

Date/Time

Labo	ratory 1	Name: San Antonio Testing Laboratory Inc.	LRC Date:	2/30/99 to 05/03/23					
Proje	ct Nam	ne: Calaveras Power Station-CCR Units Evaporation	Laboratory Job Number: 2	2304292					
Revie	ewer Na	ame: JA,SG,XE	1	3317141,B317252,B	31726	61,B3	17276	,B317	2
# ¹	\mathbf{A}^2	Description		-	Yes	No	\mathbf{NA}^{3}	\mathbf{NR}^{4}	ER#
R1		Chain-of-custody (C-O-C)							
		Did samples meet the laboratory's standard conditions of sample accepta	ability upon receipt?		Х				
		Were all departures from standard conditions described in an exception n	report?		Х				
R2		Sample and quality control (QC) identification							
		Are all field sample ID numbers cross-referenced to the laboratory ID numbers	umbers?		Х				
		Are all laboratory ID numbers cross-referenced to the corresponding QC	C data?		Х				
R3		Test reports							
		Were all samples prepared and analyzed within holding times?			Х				
		Other than those results < MQL, were all other raw values bracketed by	calibration standards?		Х				
		Were calculations checked by a peer or supervisor?			Х				
		Were all analyte identifications checked by a peer or supervisor?			Х				
	[Were sample quantitation limits reported for all analytes not detected?			Х				
	[Were all results for soil and sediment samples reported on a dry weight b	basis?				Х		
	[Were % moisture (or solids) reported for all soil and sediment samples?					Х		
		If required for the project, TICs reported?					Х		
R4		Surrogate recovery data							
		Were surrogates added prior to extraction?					Х		
		Were surrogate percent recoveries in all samples within the laboratory Q	C limits?				Х		
R5		Test reports/summary forms for blank samples							
		Were appropriate type(s) of blanks analyzed?			Х				
		Were blanks analyzed at the appropriate frequency?		Х					
	Were method blanks taken through the entire analytical process, includin	ng preparation and, if applicable, cleanup	procedures?	Х					
		Were blank concentrations < MQL?			Х				
R6		Laboratory control samples (LCS):							
		Were all COCs included in the LCS?					Х		
		Was each LCS taken through the entire analytical procedure, including p	prep and cleanup steps?		Х				
		Were LCSs analyzed at the required frequency?			Х				
		Were LCS (and LCSD, if applicable) %Rs within the laboratory QC lim	its?		Х				S00
		Does the detectability data document the laboratory's capability to detect	the SQLs?	Х					
		Was the LCSD RPD within QC limits?			Х				
R7		Matrix spike (MS) and matrix spike duplicate (MSD) data							
		Were the project/method specified analytes included in the MS and MSI	D?		Х				
		Were MS/MSD analyzed at the appropriate frequency?			Х				
		Were MS (and MSD, if applicable) %Rs within the laboratory QC limits	??			Х			S002
		Were MS/MSD RPDs within laboratory QC limits?				Х			S00.
R8		Analytical duplicate data							
		Were appropriate analytical duplicates analyzed for each matrix?			Х				
		Were analytical duplicates analyzed at the appropriate frequency?			Х				
		Were RPDs or relative standard deviations within the laboratory QC lim	its?		Х				
R9		Method quantitation limits (MQLs):							
		Are the MQLs for each method analyte included in the laboratory data p			Х				
		Do the MQLs correspond to the concentration of the lowest non-zero ca	libration standard?		Х				
		Are unadjusted MQLs included in the laboratory data package?			Х				
R10		Other problems/anomalies							
		Are all known problems/anomalies/special conditions noted in this LRC	and ER?		Х				
		Were all necessary corrective actions performed for the reported data?			Х				
		Was applicable and available technology used to lower the SQL minimiz	ze the matrix interference affects on the s	ample results?	Х				

appropriate retention period.

 $2. \ \ O = organic \ analyses; \ I = inorganic \ analyses \ (and \ general \ chemistry, \ when \ applicable);$

3. NA = Not applicable;

4. NR = Not reviewed;

5. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

RG-366/TRRP-13 December 2002

Labo	ratory]	Name: San Antonio Testing Laboratory Inc.	LRC Date:	12/30/99 to 05/03/23					
Proje	ct Nam	ne: Calaveras Power Station-CCR Units Evaporation	Laboratory Job Number:	2304292					
Revie	ewer N	ame: JA,SG,XE	Prep Batch Number(s):	B317141,B317252,B	3172	61,B3	1727	6,B31′	72
# ¹	\mathbf{A}^2	Description			Yes	No	\mathbf{NA}^{3}	\mathbf{NR}^{4}	ER#
S1		Initial calibration (ICAL)					•		
		Were response factors and/or relative response factors for each analyte w	vithin QC limits?		Х				
	ΙΓ	Were percent RSDs or correlation coefficient criteria met?			Х				
	[Was the number of standards recommended in the method used for all an	nalytes?		Х				
	[Were all points generated between the lowest and highest standard used	to calculate the curve?		Х				
	[Are ICAL data available for all instruments used?			Х				
	[Has the initial calibration curve been verified using an appropriate secon	nd source standard?		Х				
S2		Initial and continuing calibration verification (ICCV and CCV) and	l continuing calibration						
		Was the CCV analyzed at the method-required frequency?	E.		Х				
		Were percent differences for each analyte within the method-required Q	C limits?		Х				
		Was the ICAL curve verified for each analyte?			Х				
		Was the absolute value of the analyte concentration in the inorganic CCI	B < MDL?						
S 3		Mass spectral tuning:		4				· · · · ·	
		Was the appropriate compound for the method used for tuning?					Х		
		Were ion abundance data within the method-required QC limits?					Х		
S4		Internal standards (IS):		1					
		Were IS area counts and retention times within the method-required QC	limits?						
S5		Raw data (NELAC section 1 appendix A glossary, and section 5.12 o		4					
		Were the raw data (for example, chromatograms, spectral data) reviewed			Х				
		Were data associated with manual integrations flagged on the raw data?			Х				
S 6		Dual column confirmation							
		Did dual column confirmation results meet the method-required QC?				[Х		
S 7		Tentatively identified compounds (TICs):							
		If TICs were requested, were the mass spectra and TIC data subject to ap	ppropriate checks?				Х		
S8		Interference Check Sample (ICS) results:							
		Were percent recoveries within method QC limits?							
S 9		Serial dilutions, post digestion spikes, and method of standard addit	tions						
		Were percent differences, recoveries, and the linearity within the QC lim							
S10		Method detection limit (MDL) studies	1						
		Was a MDL study performed for each reported analyte?			Х				
		Is the MDL either adjusted or supported by the analysis of DCSs?			Х				
S11		Proficiency test reports:							
		Was the laboratory's performance acceptable on the applicable proficien-	cv tests or evaluation studies?		Х				
S12		Standards documentation	,						
		Are all standards used in the analyses NIST-traceable or obtained from c	other appropriate sources?		Х				
S13		Compound/analyte identification procedures							
		Are the procedures for compound/analyte identification documented?			Х				
S14		Demonstration of analyst competency (DOC)						· · · · ·	
		Was DOC conducted consistent with NELAC Chapter 5C or ISO/IEC 42	?		Х				
		Is documentation of the analyst's competency up-to-date and on file?			X				
\$15	╞	Verification/validation documentation for methods (NELAC Chap 5	5 or ISO/IEC 17025 Section 5)			L	I	I I	
		Are all the methods used to generate the data documented, verified, and	,		Х	[
516	├ - ┝	Laboratory standard operating procedures (SOPs):	. anaated, miere applicable:		~	I	I	<u> </u>	
,10	1	Are laboratory SOPs current and on file for each method performed?			Х	<u> </u>			

1. Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

2. O = organic analyses; I = inorganic analyses (and general chemistry, when applicable);

3. NA = Not applicable;

4. NR = Not reviewed;

5. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

RG-366/TRRP-13 December 2002

Laboratory N	Vame: San Antonio Testing Laboratory Inc.	LRC Date:	12/30/99 to 05/03/23							
Project Name	e: Calaveras Power Station-CCR Units Evaporatio	n Laboratory Job Number:	2304292							
Reviewer Na	me: JA,SG,XE	Prep Batch Number(s):	B317141,B317252,B317261,B317276,B3172 78							
ER# ¹	Description									
S001										
S002 N	Matrix Spike Recoveries outside the QC acceptance criteria, due to ma	atrix interferences, are flagged on th	e analytical report.							
S003 RPD values above the acceptance limits are flagged on the analytical report.										
1. ER# = Except	tion Report identification number (an Exception Report should be completed for an item if "N	R" or "No" is checked on the LRC)	RG-366/TRRP-13 December 20							

CPS Energy - Environmental Dept. P.O. Box 1771 San Antonio TX, 78296-1771

Project: Calaveras Power Station-CCR Units Evaporation Pond Project Number: [none] Project Manager: Chelsey Vasbinder **Reported:** 05/03/23 17:26 **Received:** 04/20/23 10:56

Report No. 2304292

SAMPLE SUMMARY

Total Samples received in this work order:

Sample ID	Laboratory ID	<u>Matrix</u> <u>Sam</u>	pling Method	Date Sampled	Date Received
JKS-36-20230418-CCR	2304292-01	Non-potable Water	Grab	04/18/23 15:02	04/20/23 10:56
JKS-47-20230419-CCR	2304292-02	Non-potable Water	Grab	04/19/23 12:57	04/20/23 10:56
JKS-61-20230419-CCR	2304292-03	Non-potable Water	Grab	04/19/23 10:00	04/20/23 10:56
JKS-63R-20230418-CCR	2304292-04	Non-potable Water	Grab	04/18/23 15:43	04/20/23 10:56
JKS-64-20230419-CCR	2304292-05	Non-potable Water	Grab	04/19/23 11:45	04/20/23 10:56
EB-001-20230419	2304292-06	Non-potable Water	Grab	04/19/23 13:33	04/20/23 10:56

Notes

Notes:

All quality control samples and checks are within acceptance limits unless otherwise indciated.

6

Test results pertain only to those items tested.

All samples were in good condition when received by the laboratory unless otherwise noted.

Page 6 of 23

CPS Energy - Environmental Dept. P.O. Box 1771 San Antonio TX, 78296-1771 Notes: Project: Calaveras Power Station-CCR Units Evaporation Pond Project Number: [none] Project Manager: Chelsey Vasbinder **Reported:** 05/03/23 17:26 **Received:** 04/20/23 10:56

Sample ID #: JKS-36-20230418-CC	ample ID #: JKS-36-20230418-CCR					Sampling Method: Grab					
Sample Matrix: Non-potable Water			Date/Time Collected: 04/18/23 15:02								
Analyte	Result	MQL	Flag	MDL	SQL[SDL]	Units	PrepMethod	Method	Analyzed	Analyst	Notes
General Chemistry											
Total Dissolved Solids *	2020	3.12		2.50	3.12	mg/L	SM2540C	SM2540C	04/24/23	JA	
Anions by Ion Chromatography	Anions by Ion ChromatographyBatch ID > B317261										
Chloride *	341	2.50		0.052	1.30	mg/L	EPA 300.0	EPA 300.0	04/27/23	SG	
Fluoride	1.30	0.020		0.018	0.018	mg/L	EPA 300.0	EPA 300.0	04/27/23	SG	
Sulfate *	950	2.50		0.06	1.40	mg/L	EPA 300.0	EPA 300.0	04/27/23	SG	
Total Metals By ICP			Bat	tch ID > B31	7141						
Boron	0.415	0.010		0.0006	0.0006	mg/L	EPA 6010B	EPA 6010B	04/24/23	XE	
Calcium *	166	1.00		0.009	0.009	mg/L	EPA 6010B	EPA 6010B	04/24/23	XE	

CPS Energy - Environmental Dept. P.O. Box 1771 San Antonio TX, 78296-1771 Notes: Project: Calaveras Power Station-CCR Units Evaporation Pond Project Number: [none] Project Manager: Chelsey Vasbinder **Reported:** 05/03/23 17:26 **Received:** 04/20/23 10:56

Sample ID #: JKS-47-20230419-CC Sample Matrix: Non-potable Water		Sampling Method: Grab Date/Time Collected: 04/19/23 12:57					Lab Sample ID #: 2304292-02				
Analyte	Result	MQL	Flag	MDL	SQL[SDL]	Units	PrepMethod	Method	Analyzed	Analyst	Notes
General ChemistryBatch ID > B317278											
Total Dissolved Solids *	1040	2.50		2.50	2.50	mg/L	SM2540C	SM2540C	04/25/23	JA	
Anions by Ion ChromatographyBatch ID > B317261											
Chloride *	196	2.50		0.052	1.30	mg/L	EPA 300.0	EPA 300.0	04/27/23	SG	
Fluoride	< 0.018	0.020		0.018	0.018	mg/L	EPA 300.0	EPA 300.0	04/27/23	SG	
Sulfate *	295	2.50		0.06	1.40	mg/L	EPA 300.0	EPA 300.0	04/27/23	SG	
Total Metals By ICP			Bat	ch ID > B31	7141						
Boron	0.680	0.010		0.0006	0.0006	mg/L	EPA 6010B	EPA 6010B	04/24/23	XE	
Calcium *	77.5	1.00		0.009	0.009	mg/L	EPA 6010B	EPA 6010B	04/24/23	XE	

CPS Energy - Environmental Dept. P.O. Box 1771 San Antonio TX, 78296-1771 Notes: Project: Calaveras Power Station-CCR Units Evaporation Pond Project Number: [none] Project Manager: Chelsey Vasbinder **Reported:** 05/03/23 17:26 **Received:** 04/20/23 10:56

Sample ID #: JKS-61-20230419-CC	1					Sampling Method: Grab					
Sample Matrix: Non-potable Water			Date/Time Collected: 04/19/23 10:00								
Analyte	Result	MQL	Flag	MDL	SQL[SDL]	Units	PrepMethod	Method	Analyzed	Analyst	Notes
General ChemistryBatch ID > B317278											
Total Dissolved Solids *	1090	2.50		2.50	2.50	mg/L	SM2540C	SM2540C	04/25/23	JA	
Anions by Ion Chromatography			Bat	tch ID > B31	7261						
Chloride *	150	2.50		0.052	1.30	mg/L	EPA 300.0	EPA 300.0	04/27/23	SG	
Fluoride	0.355	0.020		0.018	0.018	mg/L	EPA 300.0	EPA 300.0	04/27/23	SG	
Sulfate *	331	2.50		0.06	1.40	mg/L	EPA 300.0	EPA 300.0	04/27/23	SG	
Total Metals By ICP			Bat	tch ID > B31	7141						
Boron	1.06	0.010		0.0006	0.0006	mg/L	EPA 6010B	EPA 6010B	04/24/23	XE	
Calcium *	71.2	1.00		0.009	0.009	mg/L	EPA 6010B	EPA 6010B	04/24/23	XE	

CPS Energy - Environmental Dept. P.O. Box 1771 San Antonio TX, 78296-1771 Notes: Project: Calaveras Power Station-CCR Units Evaporation Pond Project Number: [none] Project Manager: Chelsey Vasbinder **Reported:** 05/03/23 17:26 **Received:** 04/20/23 10:56

Sample ID #: JKS-63R-20230418-C	ample ID #: JKS-63R-20230418-CCR					Sampling Method: Grab					
Sample Matrix: Non-potable Water	•		Date/Time Collected: 04/18/23 15:43								
Analyte	Result	MQL	Flag	MDL	SQL[SDL]	Units	PrepMethod	Method	Analyzed	Analyst	Notes
General Chemistry Batch ID > B317276											
Total Dissolved Solids *	9540	12.5		2.50	12.5	mg/L	SM2540C	SM2540C	04/24/23	JA	
Anions by Ion Chromatography	Anions by Ion ChromatographyBatch ID > B317261										
Chloride *	2850	50.0		0.052	26.0	mg/L	EPA 300.0	EPA 300.0	04/27/23	SG	
Fluoride	< 0.018	0.020		0.018	0.018	mg/L	EPA 300.0	EPA 300.0	04/27/23	SG	
Sulfate *	1890	50.0		0.06	28.0	mg/L	EPA 300.0	EPA 300.0	04/27/23	SG	
Total Metals By ICP			Bat	tch ID > B31	7141						
Boron	1.11	0.010		0.0006	0.0006	mg/L	EPA 6010B	EPA 6010B	04/24/23	XE	
Calcium *	886	10.0		0.009	0.091	mg/L	EPA 6010B	EPA 6010B	04/25/23	XE	

CPS Energy - Environmental Dept. P.O. Box 1771 San Antonio TX, 78296-1771 Notes: Project: Calaveras Power Station-CCR Units Evaporation Pond Project Number: [none] Project Manager: Chelsey Vasbinder **Reported:** 05/03/23 17:26 **Received:** 04/20/23 10:56

Sample ID #: JKS-64-20230419-CC	umple ID #: JKS-64-20230419-CCR					Sampling Method: Grab					
Sample Matrix: Non-potable Water			Date/Time Collected: 04/19/23 11:45								
Analyte	Result	MQL	Flag	MDL	SQL[SDL]	Units	PrepMethod	Method	Analyzed	Analyst	Notes
General Chemistry Batch ID > B317278											
Total Dissolved Solids *	574	2.50		2.50	2.50	mg/L	SM2540C	SM2540C	04/25/23	JA	
Anions by Ion Chromatography			Bat	tch ID > B31	7261						
Chloride *	19.2	1.00		0.052	0.519	mg/L	EPA 300.0	EPA 300.0	04/27/23	SG	
Fluoride	0.107	0.020		0.018	0.018	mg/L	EPA 300.0	EPA 300.0	04/27/23	SG	
Sulfate *	212	1.00		0.06	0.56	mg/L	EPA 300.0	EPA 300.0	04/27/23	SG	
Total Metals By ICP			Bat	tch ID > B31	7141						
Boron	0.683	0.010		0.0006	0.0006	mg/L	EPA 6010B	EPA 6010B	04/24/23	XE	
Calcium *	21.6	1.00		0.009	0.009	mg/L	EPA 6010B	EPA 6010B	04/24/23	XE	

CPS Energy - Environmental Dept. P.O. Box 1771 San Antonio TX, 78296-1771 Notes: Project: Calaveras Power Station-CCR Units Evaporation Pond Project Number: [none] Project Manager: Chelsey Vasbinder **Reported:** 05/03/23 17:26 **Received:** 04/20/23 10:56

Sample ID #: EB-001-20230419 Sample Matrix: Non-potable Water				-	ling Method: Fime Collecto		3 13:33	Lal	b Sample II	D #: 2304	292-06
Analyte	Result	MQL	Flag	MDL	SQL[SDL]	Units	PrepMethod	Method	Analyzed	Analyst	Notes
General Chemistry				Batch ID > B31	7278						
Total Dissolved Solids *	< 2.50	2.50		2.50	2.50	mg/L	SM2540C	SM2540C	04/25/23	JA	
Anions by Ion Chromatography				Batch ID > B31	7261						
Chloride *	< 0.052	0.100		0.052	0.052	mg/L	EPA 300.0	EPA 300.0	04/27/23	SG	
Fluoride	< 0.018	0.020		0.018	0.018	mg/L	EPA 300.0	EPA 300.0	04/27/23	SG	
Sulfate *	< 0.06	0.10		0.06	0.06	mg/L	EPA 300.0	EPA 300.0	04/27/23	SG	
Total Metals By ICP				Batch ID > B31	7141						
Boron	0.001	0.010	J	0.0006	0.0006	mg/L	EPA 6010B	EPA 6010B	04/24/23	XE	
Calcium *	0.654	1.00	J	0.009	0.009	mg/L	EPA 6010B	EPA 6010B	04/24/23	XE	

CPS Energy - Environmental Dept. P.O. Box 1771 San Antonio TX, 78296-1771 Notes: Project: Calaveras Power Station-CCR Units Evaporation Pond Project Number: [none] Project Manager: Chelsey Vasbinder **Reported:** 05/03/23 17:26 **Received:** 04/20/23 10:56

Report No. 2304292

General Chemistry - Quality Control

		Dama (C 11-	C		0/DEC		RPD
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch B317276 - SM2540C									
Blank (B317276-BLK1)				Prepared: (04/24/23 15:	30 Analyz	ed: 04/24/23 1	6:50	
Total Dissolved Solids	<2.50	2.50	mg/L				-		
LCS (B317276-BS1)				Prepared: (04/24/23 15:	30 Analyz	ed: 04/24/23 1	6:50	
Total Dissolved Solids	108	2.50	mg/L	100		108	80-120		
LCS Dup (B317276-BSD1)				Prepared: (04/24/23 15:	30 Analyz	ed: 04/24/23 1	6:50	
Total Dissolved Solids	95.0	2.50	mg/L	100		95	80-120	13	20
Duplicate (B317276-DUP1)		Source: 2304293-	01	Prepared: (04/24/23 15:	30 Analyz	ed: 04/24/23 1	6:50	
Total Dissolved Solids	2200	3.57	mg/L		2120		-	4	20
Duplicate (B317276-DUP2)		Source: 2304295-	06	Prepared: (04/24/23 15:	30 Analyz	ed: 04/24/23 1	6:50	
Total Dissolved Solids	4060	8.33	mg/L		3970		-	2	20
Batch B317278 - SM2540C									
Blank (B317278-BLK1)				Prepared: (04/25/23 15:	00 Analyz	ed: 04/25/23 1	6:45	
Total Dissolved Solids	<2.50	2.50	mg/L				-		
LCS (B317278-BS1)				Prepared: (04/25/23 15:	00 Analyz	ed: 04/25/23 1	6:45	
Total Dissolved Solids	108	2.50	mg/L	100		108	80-120		
LCS Dup (B317278-BSD1)				Prepared: (04/25/23 15:	00 Analyz	ed: 04/25/23 1	6:45	
Total Dissolved Solids	95.0	2.50	mg/L	100		95	80-120	13	20
Duplicate (B317278-DUP1)		Source: 2304293-	05	Prepared: (04/25/23 15:	00 Analyz	ed: 04/25/23 1	6:45	
Total Dissolved Solids	2480	3.57	mg/L		2310		_	7	20

CPS Energy - Environmental Dept. P.O. Box 1771 San Antonio TX, 78296-1771 Notes: Project: Calaveras Power Station-CCR Units Evaporation Pond Project Number: [none] Project Manager: Chelsey Vasbinder **Reported:** 05/03/23 17:26 **Received:** 04/20/23 10:56

Report No. 2304292

General Chemistry - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	
Batch B317278 - SM2540C										
Duplicate (B317278-DUP2)		Source: 2304294-1	1	Prepared: 0	4/25/23 15	:00 Analyz	ed: 04/25/23	16:45		
Total Dissolved Solids	1440	3.12	mg/L		1400		-	2	20	

CPS Energy - Environmental Dept. P.O. Box 1771 San Antonio TX, 78296-1771 Notes: Project: Calaveras Power Station-CCR Units Evaporation Pond Project Number: [none] Project Manager: Chelsey Vasbinder **Reported:** 05/03/23 17:26 **Received:** 04/20/23 10:56

Report No. 2304292

Anions by Ion Chromatography - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	
Batch B317252 - EPA 300.0										
Blank (B317252-BLK1)				Prepared:	04/27/23 16	:00 Analyz	ed: 04/27/23	18:01		
Fluoride	< 0.020	0.020	mg/L				-			
LCS (B317252-BS1)				Prepared:	04/27/23 16	:00 Analyz	ed: 04/27/23	18:19		
Fluoride	1.07	0.020	mg/L	1.00		107	90-110			
LCS Dup (B317252-BSD1)				Prepared:	04/27/23 16	:00 Analyz	ed: 04/27/23	18:37		
Fluoride	1.01	0.020	mg/L	1.00		101	90-110	5	20	
Duplicate (B317252-DUP1)		Source: 2304293-0)3	Prepared:	04/27/23 16	:00 Analyz	ed: 04/27/23	21:54		
Fluoride	0.0875	0.020	mg/L		0.0869		-	0.7	20	
Matrix Spike (B317252-MS1)		Source: 2304293-0)3	Prepared:	04/27/23 16	:00 Analyz	ed: 04/27/23	22:12		
Fluoride	0.945	0.020	mg/L	1.00	0.0869	86	80-120			
Matrix Spike Dup (B317252-MSD1)		Source: 2304293-()3	Prepared:	04/27/23 16	:00 Analyz	ed: 04/27/23	22:29		
Fluoride	0.945	0.020	mg/L	1.00	0.0869	86	80-120	0.04	20	
Batch B317261 - EPA 300.0										
Blank (B317261-BLK1)				Prepared:	04/27/23 16	:00 Analyz	ed: 04/27/23	18:01		
Chloride	< 0.100	0.100	mg/L				-			
Sulfate	< 0.10	0.10	mg/L				-			
LCS (B317261-BS1)				Prepared:	04/27/23 16	:00 Analyz	ed: 04/27/23	18:19		
Chloride	5.47	0.100	mg/L	5.00		109	90-110			
Sulfate	5.51	0.10	mg/L	5.00		110	90-110			

CPS Energy - Environmental Dept. P.O. Box 1771 San Antonio TX, 78296-1771 Notes: Project: Calaveras Power Station-CCR Units Evaporation Pond Project Number: [none] Project Manager: Chelsey Vasbinder **Reported:** 05/03/23 17:26 **Received:** 04/20/23 10:56

Report No. 2304292

Anions by Ion Chromatography - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	
								Iu D		
Batch B317261 - EPA 300.0										
LCS Dup (B317261-BSD1)				Prepared:	04/27/23 16	:00 Analyz	ed: 04/27/23	18:37		
Chloride	5.48	0.100	mg/L	5.00		110	90-110	0.1	20	
Sulfate	5.51	0.10	mg/L	5.00		110	90-110	0.04	20	L
Duplicate (B317261-DUP1)		Source: 2304293-	03	Prepared:	04/27/23 16	:00 Analyz	zed: 04/27/23	23:05		
Chloride	95.8	2.50	mg/L		96.1		-	0.4	20	
Sulfate	598	2.50	mg/L		598		-	0.03	20	
Matrix Spike (B317261-MS1)		Source: 2304293-	03	Prepared:	04/27/23 16	:00 Analyz	ed: 04/27/23	22:12		
Chloride	119	0.100	mg/L	5.00	96.1	454	80-120			М
Sulfate	742	0.10	mg/L	5.00	598	NR	80-120			М
Matrix Spike Dup (B317261-MSD	l)	Source: 2304293-	03	Prepared:	04/27/23 16	:00 Analyz	ed: 04/27/23	22:29		
Chloride	119	0.100	mg/L	5.00	96.1	452	80-120	0.09	20	М
Sulfate	742	0.10	mg/L	5.00	598	NR	80-120	0.02	20	М

CPS Energy - Environmental Dept. P.O. Box 1771 San Antonio TX, 78296-1771 Notes: Project: Calaveras Power Station-CCR Units Evaporation Pond Project Number: [none] Project Manager: Chelsey Vasbinder **Reported:** 05/03/23 17:26 **Received:** 04/20/23 10:56

Report No. 2304292

Total Metals By ICP - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	
Batch B317141 - EPA 6010B										
Blank (B317141-BLK1)				Prepared:	04/24/23 13	3:00 Analyz	zed: 04/24/23	17:14		
Boron	< 0.010	0.010	mg/L				-			
Calcium	<1.00	1.00	mg/L				-			
LCS (B317141-BS1)				Prepared:	04/24/23 13	3:00 Analyz	zed: 04/24/23	17:25		
Boron	1.90	0.010	mg/L	2.00		95	85-115			
Calcium	1.87	1.00	mg/L	2.00		94	85-115			
LCS Dup (B317141-BSD1)				Prepared:	04/24/23 13	3:00 Analyz	zed: 04/24/23	17:31		
Boron	1.88	0.010	mg/L	2.00		94	85-115	0.9	20	
Calcium	1.86	1.00	mg/L	2.00		93	85-115	0.5	20	
Duplicate (B317141-DUP1)		Source: 2304292-0)1	Prepared:	04/24/23 13	3:00 Analyz	zed: 04/24/23	17:53		
Boron	0.392	0.010	mg/L		0.415		-	6	20	
Calcium	160	1.00	mg/L		166		-	4	20	
Duplicate (B317141-DUP2)		Source: 2304293-0)5	Prepared:	04/24/23 13	3:00 Analyz	zed: 04/24/23	19:40		
Boron	0.561	0.010	mg/L		0.579		-	3	20	
Calcium	352	1.00	mg/L		358		-	2	20	
Matrix Spike (B317141-MS1)		Source: 2304292-0)1	Prepared:	04/24/23 13	3:00 Analyz	zed: 04/24/23	17:59		
Boron	1.72	0.010	mg/L	2.00	0.415	65	75-125			Ν
Calcium	159	1.00	mg/L	2.00	166	NR	75-125			Ν
Matrix Spike (B317141-MS2)		Source: 2304293-0)5	Prepared:	04/24/23 13	3:00 Analyz	zed: 04/24/23	19:46		
Boron	2.62	0.010	mg/L	2.00	0.579	102	75-125			
Calcium	352	1.00	mg/L	2.00	358	NR	75-125			Ν
Matrix Spike Dup (B317141-MSD1)		Source: 2304292-0)1	Prepared:	04/24/23 13	3:00 Analyz	zed: 04/24/23	18:05		
Boron	1.69	0.010	mg/L	2.00	0.415	64	75-125	2	20	N
Calcium	163	1.00	mg/L	2.00	166	NR	75-125	3	20	Ν

CPS Energy - Environmental Dept. P.O. Box 1771 San Antonio TX, 78296-1771 Notes: Project: Calaveras Power Station-CCR Units Evaporation Pond Project Number: [none] Project Manager: Chelsey Vasbinder **Reported:** 05/03/23 17:26 **Received:** 04/20/23 10:56

Report No. 2304292

Total Metals By ICP - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	
Batch B317141 - EPA 6010B										
Matrix Spike Dup (B317141-MSD2)		Source: 2304293-	05	Prepared:	04/24/23 13	3:00 Analyz	ed: 04/24/23 1	9:52		
Boron	2.62	0.010	mg/L	2.00	0.579	102	75-125	0.08	20	

CPS Energy - Environmental Dept. P.O. Box 1771 San Antonio TX, 78296-1771 Project: Calaveras Power Station-CCR Units Evaporation Pond Project Number: [none] Project Manager: Chelsey Vasbinder **Reported:** 05/03/23 17:26 **Received:** 04/20/23 10:56

Report No. 2304292

DEFINITIONS

Notes:

DEFINITIO	<u>JNS</u>
*	TNI / NELAC accredited analyte
PQL	Practical Quantitation Limit
MCL	Maximum Contaminant Level
mg/Kg	Milligrams per Kilogram (Parts per Million)
mg/L	Milligrams per Liter (Parts per Million)
PPM	Parts per Million
ND	This qualifier indicates that the analyte was analyzed but not detected above the MDL
J	This qualifier indicates that the analyte is an estimate value between MQL and MDL
SQL	Sample Quantitation Limit
MQL	Method Quantitation Limit
MDL	Method Detection Limit
L	LCS/LCSD recovery is outside QC limits, the results may have a slight bias.
М	MS/MSD recovery is outside QC limits due to possible matrix interferences, results may have a slight bias .
S	RPD is outside QC limits.
RMCCL	Recommended Maximum Concentration of Contaminants Level
µR/hr	MicroRoentgens per hour (Measure of Radioactivity Level)
HT	Sample received past holdtime
IC	Improper Container for this analyte(s)
IT	Improper Temperature
IP	Improper preservation for this analyte(s)
V	Insufficient Volume
В	Sample collected in Bulk
AB	VOA Vial contained air bubbles.
OP	ortho-Phosphate was not filtered in the field within 15minutes of collection.
CCV	Continuing Calibration Verification Standard.
ICV	Initial Calibration Verification Standard.
Surr L	Surrogate recovery is low outside QC limits.
Surr H	Surrogate recovery is high outside QC limits.
NR	Not Recovered due to source sample concentration exceeds spiked concentration.

Test Methods followed by the laboratory are referenced in the following approved methodology, unless otherwise specified.

Standard Methods for the Examination of Water and Wastewater, 23rd Edition, 2017 Methods for Chemical Analysis of Water and Wastes, EPA 600/4-79-020, Rev. March 1983

EPA SW Test Methods for the Examination of Solid Waste, SW-846, 1996

CPS Energy - Environmental Dept. P.O. Box 1771 San Antonio TX, 78296-1771

Notes:

Project: Calaveras Power Station-CCR Units Evaporation Pond Project Number: [none] Project Manager: Chelsey Vasbinder **Reported:** 05/03/23 17:26 **Received:** 04/20/23 10:56

Report No. 2304292

Aimee Landon For Marcela Gracia Hawk, President For

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Richard Hawk, General Manager

Sub	mission key K110-HBI-250R	On 04/20/20	023 09:33 By	Chelsey Vasbinder	Pag
P.O. San Phor	Client Information Energy - Environmental Dept. Box 1771 Antonio TX 78296-1771 ne: (210) 353-4719 (210) 353-4271		Information Station-CCR Units	Laboratory Information San Antonio Testing Laboratory 1610 S. Laredo St San Antonio TX 78207 Phone: 210-229-9920 Fax: 210-229-9921	COC Information Shipped via: Hand Delivered
#1	JKS-36-20230418-CCR 04/18/2023 15:02 Grab / Liquid		B_T TAT: 7 Ca_T TAT: 7 Chloride_IC TAT: 7 Fluoride_IC TAT: 7 Sulfate_IC TAT: 7 TDS TAT: 7	Analyses	Containers 1 L Plastic Unpreserved (1) 250 mL Plastic HNO3 (1)
1	Comments: TRRP REPORTIN	IG			and the second sec
#2	JKS-47-20230419-CCR 04/19/2023 12:57 Grab / Liquid		B_T TAT: 7 Ca_T TAT: 7 Chloride_IC TAT: 7 Fluoride_IC TAT: 7 Sulfate_IC TAT: 7 TDS TAT: 7	Analyses	Containers 1 L Plastic Unpreserved (1) 250 mL Plastic HNO3 (1)
	Comments: TRRP REPORTIN	IG		12-0-0	
#3	JKS-61-20230419-CCR 04/19/2023 10:00 Grab / Liquid		B_T TAT: 7 Ca_T TAT: 7 Chloride_IC TAT: 7 Fluoride_IC TAT: 7 Sulfate_IC TAT: 7 TDS TAT: 7	Analyses	Containers 1 L Plastic Unpreserved (1) 250 mL Plastic HNO3 (1)
	Comments: TRRP REPORTIN	G			
#4	JKS-63R-20230418-CCR 04/18/2023 15:43 Grab / Liquid		B_T TAT: 7 Ca_T TAT: 7 Chloride_IC TAT: 7 Fluoride_IC TAT: 7 Sulfate_IC TAT: 7 TDS TAT: 7	Analyses	Containers 1 L Plastic Unpreserved (1) 250 mL Plastic HNO3 (1)
200	Comments: TRRP REPORTIN	G		4	and the second second
¥5	JKS-64-20230419-CCR 04/19/2023 11:45 Grab / Liquid		3_T TAT: 7 2a_T TAT: 7 Chloride_IC TAT: 7 Fluoride_IC TAT: 7 Sulfate_IC TAT: 7 TDS TAT: 7	Analyses	Containers 1 L Plastic Unpreserved (1) 250 mL Plastic HNO3 (1)
	Comments: TRRP REPORTIN	G			
#6	EB-001-20230419 04/19/2023 13:33 Grab / Liquid	C C F S	B_T TAT: 7 Ca_T TAT: 7 Chloride_IC TAT: 7 Fluoride_IC TAT: 7 Sulfate_IC TAT: 7 TDS TAT: 7	Analyses	Containers 1 L Plastic Unpreserved (1) 250 mL Plastic HNO3 (1)

Date/Time	Accepted by	Date/Time
4-20-23/1015 L	ANCE SIMMAN bang - Co	1.20.27 1015
		Date/Time Accepted by 4-20-23/1015 LANCE Simmung January

n

EnviroChain [®] By Promium	n		TRR	P	2304292		
Submission key K110-HBI-250R		On 04/20/20	023 09:33	By Chelsey Vasbinder			Page 2/2
TG #7	22	oc la	2.2%				C.M.
LAUCE SIMMUG K	m	h	11-20-27	a Ital +	Jemee Jandapp	20	2023 1056

Sample Receipt Checklist

	- Environmental Dept. ower Station-CCR Units Evapora	Project Manager: Marcela Gracia Hawk Project Number: [none]
<u>Report To:</u> Chelsey Vasbinder		SATL Report Number: 2304292
Work Order Due by: Received By: Logged In By:	05/04/23 17:00 (10 day TAT) Aimee Landon Aimee Landon	Date Received: 04/20/23 10:56 Date Logged In: 04/20/23 11:32
Sample(s) Received on	ICE/evidence of Ice (cooler with me	elted ice,etc):
Sample temperature at	receipt *:	2.2°C
Custody Seals Present:		No
All containers intact:		Yes
Sample labels/COC agr	ee:	Yes
Samples Received with	in Holding time :	Yes
Samples appropriately	preserved **:	Yes
Containers received bro	ken/damaged/leaking:	No
Air bubbles present in V	VOA vials for VOC/TPH analyses, if	fapplicable: Not Applicable
TRRP 13 Reporting req	uested?	Yes
BacT Sample bottles fil	led to volume (100mL mark), if appl	licable: Not Applicable
LCR Sample bottles fill	led to volume (1 Liter mark), if appli	cable: Not Applicable
Subcontracting required	I for any analyses:	No
RUSH turnaround time	requested:	Yes
Requested Turnaround	Time:	10 Business days
Samples delivered via :		Hand Delivered
Air bill included if Sam	ples were shipped:	No
Other deviations not me	eeting SATL sample acceptance crite	ria notated on CoC: None

Notes:

* Samples delivered to the laboratory on the same day that they are collected may not meet thermal preservation criteria (>0°C but < 6°C) but are acceptable, if they arrive on ice.

** If improperly preserved, notate client authorization on CoC to proceed with analysis.

Checked By : ____

Aimee Landon

Date :

04/20/23 10:56

SATL#FO001 Revised 09/15/2022

(210) 229-9920 Fax (210) 229-9921 1610 S. Laredo Street, San Antonio, Texas 78207-7029 Page 23 of 23 www.satestinglab.com

Data Usability Summary Sampling Event/October 2023

CPS Energy Calaveras Power Station Coal Combustion Residuals (CCR) Units San Antonio, Texas

This data usability summary (DUS) was prepared in general accordance with the following key documents:

- 1) Groundwater Sampling and Analysis Program, CPS Energy, Calaveras Power Station (ERM, August 2023);
- 2) Texas Commission on Environmental Quality's (TCEQ's) *Review and Reporting of COC Concentration Data Under TRRP* (RG-366/TRRP-13, May 2010); and
- 3) Environmental Protection Agency's (EPA's) *National Functional Guidelines for Inorganic Superfund Methods Data Review* (EPA-540-R-2017-001, January 2017).

Environmental Resources Management (ERM) reviewed four laboratory analytical data packages (2310293, 2310294, 2310304, 2310305) from San Antonio Testing Laboratory (SATL) of San Antonio, Texas for the analysis of ground water samples collected on 17 October to 18 October 2023 at the CPS Energy Calaveras Power Station in San Antonio, Texas. Analytes Radium-226, Radium-228, and Lithium were subbed to Eurofins of St. Louis by SATL for analysis. Data were reviewed to assess conformance with the requirements of the above-referenced documents.

SATL and Eurofins are NELAC-accredited under the Texas Laboratory Accreditation Program for the matrices, analytes, and methods of analysis requested on the chain-of-custody documentation. SATL and Eurofins National Environmental Laboratory Accreditation Program (NELAP) certificates applicable to the period during which the laboratories generated the data in these reports is referenced in the laboratory reports.

Intended Use of Data: To provide concentration data on Appendix III Coal Combustion Residuals (CCR) Rule parameters in ground water at the CPS Energy Calaveras Facility.

Analyses requested for the laboratory packages include the following:

- EPA 300.0 Inorganic Anions (Chloride, Fluoride, Sulfate) by Ion Chromatography (IC)
- EPA 6010B Total Metals by Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES)
- EPA 903.0 and 904.0 Radium-226 and Radium-228 by Gas Flow Proportional Counters (GFPC)
- SW846 6010D Total Metals (Lithium) by ICP
- EPA 7470A Mercury by Cold-Vapor Atomic Absorption (CVAA)
- SM2540C Total Dissolved Solids

Data were reviewed and validated as described in the above-referenced documents, and the results of the review/validation are discussed in this Data Usability Summary (DUS). The following laboratory submittals and field data were examined:

- The reportable data;
- The laboratory review checklist (LRC) and associated exception report (ER); and
- The Quality Assurance/Quality Control (QA/QC) data supplied by the laboratory.

The results of supporting QC analyses are summarized on the LRC and ER, which are included in this review. The LRC, associated ER, QA/QC data, and reportable data covered by this review are included in the laboratory reports.

The Laboratory Data Package Cover Pages and Laboratory Review Checklists provided in the analytical data packages are outdated and inconsistent with current TRRP-13 guidance (May 2010). It is highly recommended that required items in the current TRRP-13 guidance be followed for laboratory data packages generated to satisfy corrective action program requirements. Data were not qualified based on this deficiency.

Introduction

Twenty-six (26) groundwater samples, two (2) duplicate samples, two (2) field blanks, and one (1) equipment blank were analyzed for select metals and anions. Seven (7) groundwater samples, one (1) duplicate sample, and one (1) field blank was also analyzed for Radium and Lithium. Table 1 lists the sample identifications cross-referenced to laboratory identifications.

Project Data Quality Objectives (DQO)

The quantitative project DQO limits specified in the *Groundwater Sampling and Analysis Program* were utilized as follows:

- Recovery (%R)
 - o Spike samples 75-125%
 - Non-spike samples 70-130%
- Relative Percent Difference (RPD) <20%

Data were qualified in accordance with the TCEQ's TRRP-13 guidance document, including data qualifier codes and data qualifier code definitions.

Data Review / Validation Results

Analytical Results

Ground water analytical results were reported in milligrams per liter (mg/L) for metals and anions. Analytical results from Eurofins was reported in micrograms per liter (μ g/L) for metals and in picocurries per liter (pCi/L) for radiological analysis. Non-detect results are reported as less than the value of the sample detection limits (SDLs). The method quantitation limits (MQLs) are also reported.

Preservation and Holding Times

The samples were evaluated for agreement with the chain-of-custody forms. The samples were received in the appropriate containers and in good condition with the paperwork properly completed.

Sample receipt temperature of the cooler at SATL were within or less than the acceptance criteria of 4 +/- 2 degrees Celsius. Sample receipt temperature for lab reports 2310293, 2310294, 2310304, 2310305 were 4.1°C, 3.9°C, 4°C, and 3.4°C, respectively. No qualifiers were added to the data. Samples were prepared and analyzed within holding times as specified by the methods. The samples were preserved in the field as specified by the methods, with the following exceptions.

In lab report 2310304, sample FB-002-20231018, and in lab report 2310305, samples JKS-36-20231017-CCR, JKS-61-20231017-CCR, and JKS-72-20231017-CCR were analyzed one day outside of holding time for TDS. The results were qualified as JL, estimated with low bias, for detected results or non-detect and estimated with low bias, UJL, for non-detect results. For radium analysis, the reference method required samples to be preserved to a pH of <2. If samples are collected without preservation, they must be received by the laboratory within 5 days for preservation according to Method 904 specifications. One sample, JKS-72-20231017-CCR, in lab report 2310305 was received by the laboratory unpreserved 6 days after the sample was collected. The sample was preserved to the appropriate pH in the laboratory; however, the analytical results were still qualified as JL, estimated low, for detected results for radium.

Calibrations

According to the LRC, initial calibrations, continuing calibrations, and calibration verifications data met method requirements for metals and anions, as applicable.

Mass Spectral Tuning

As documented in the LRC, mass spectrometry instrument performance tunes were either not applicable (appropriate compound for the method) or met specific requirements for the requested analytical methods (ion abundance data within limits).

Internal Standards

As documented in the LRC, internal standard area counts and retention times were within or not applicable for the requested analytical methods.

Percent Yield

Ba and Y Carrier percent yields for radium analysis were within laboratory acceptance limits.

Blanks

Metals, radium, and anions were not detected in the method blanks, field blanks, or equipment blanks, with the following exceptions.

For laboratory report 2310294, boron (0.004J) and calcium (0.076J) were detected in the field blank. For laboratory report 2310304, boron (0.003J), calcium (0.057J), and chloride (0.052J) were detected in the field blank. For laboratory report 2310295, boron (0.007J) and calcium (0.122J) were detected in the equipment blank. However, detected results for calcium, boron, and chloride were greater than five times the field or equipment blank concentrations; as such, no qualifiers were required.

Laboratory Control Samples

Laboratory control sample and duplicate (LCS/LCSD) precision and accuracy results (*i.e.*, percent recoveries and RPDs) for all analyses were within project DQO acceptance limits, with the following exception.

In lab reports 2310294, 2310304, and 2310305, LCS/LCSD percent recoveries for mercury were above laboratory limits, but within DQO limits; therefore, no qualifiers were required.

Matrix Spike/Matrix Spike Duplicates

Matrix spike/matrix spike duplicate (MS/MSD) precision and accuracy results (*i.e.*, percent recoveries and RPDs) using project samples were within project DQO acceptance limits, with the following exceptions.

In lab report 2310293, MS/MSD analysis was performed on project samples JKS-46-20231017-CCR for anions and JKS-31-20231018-CCR and JKS-51-20231018-CCR for metals. The MS and MSD had recoveries above laboratory and DQO limits or Not Recoverable (NR) for chloride and sulfate. The parent concentrations for chloride and sulfate were greater than four times the amount spiked into it; therefore, no qualifiers were required for high MS/MSD recoveries for chloride or the NR-flagged recoveries for sulfate. The MS and MSD recoveries for metals were run on two project-related samples in the same batch. The MS/MSD recoveries for boron and calcium were above laboratory and DQO limits or Not Recoverable (NR) for calcium. The parent concentration for calcium was greater than four times the amount spiked into it; therefore, no qualifiers were required for calcium. Additionally, MS/MSD recoveries for boron were within DQO limits associated with sample JKS-51-20231018-CCR in the same batch. As such, only the parent sample would be qualified as estimated with high bias (JH) due to high MS/MSD recoveries.

In lab report 2310294, MS/MSD analysis was performed on project samples JKS-46-20231017-CCR and FB-001-20231018 for anions and JKS-31-20231018-CCR and JKS-51-20231018-CCR for metals. The MS and MSD had recoveries above laboratory and DQO limits or Not Recoverable (NR) for chloride and sulfate. The parent concentrations for chloride and sulfate were greater than four times the amount spiked into it; therefore, no qualifiers were required for high MS/MSD recoveries for chloride or the NR-flagged recoveries for sulfate. The MS and MSD had recoveries above laboratory and DQO limits for cadmium, calcium, selenium, arsenic, and boron; however, MS/MSD recoveries for arsenic and boron were within DQO limits associated with sample JKS-31-20231018-CCR in the same batch. As such, only the parent sample JKS-51-20231018-CCR was gualified as estimated with high bias (JH) for arsenic and boron (if analyzed) due to high MS/MSD recoveries. All samples in the batch with reported detections for cadmium and selenium were qualified as estimated with high bias (JH) due to high MS/MSD recoveries. The MS/MSD recoveries were Not Recoverable (NR) for Calcium as the parent concentrations were greater than four times the amount spiked into it; therefore, no qualifiers were required for calcium.

In lab report 2310304, MS/MSD analysis was performed on project sample JKS-65-20231018-PDP for anions. The MS and MSD had recoveries above laboratory and DQO limits or Not Recoverable (NR) and MSD RPDs higher than DQO limits for chloride and sulfate. The parent concentrations for chloride and sulfate were greater than four times the amount spiked into it; therefore, no qualifiers were required for high MS/MSD recoveries or RPDs for sulfate or the NR-flagged recoveries for chloride.

In lab report 2310305, MS/MSD analysis was performed on project sample JKS-47-20231018-CCR for anions. The MS and MSD had Not Recoverable (NR) recoveries for chloride and sulfate. The parent concentrations for chloride and sulfate were greater than four times the amount spiked into it; therefore, no qualifiers were required for the NR-flagged recoveries.

In lab report 2310305, MS/MSD analysis was performed on project sample 2310305-01 for metals. MS/MSD recoveries were below DQO limits for antimony, barium, beryllium, boron, chromium, and cobalt and were above DQO limits or Not Recoverable (NR) for cadmium and calcium. The parent concentration for calcium was greater than four times the amount spiked into it; therefore, no qualifiers were required for calcium. All samples in the batch with reported concentrations for antimony, barium, beryllium, boron, chromium, and cobalt were qualified as estimated with low bias (JL) or non-detect and estimated with low bias (UJL) due to low MS/MSD recoveries. All samples in the batch with reported detections for cadmium were qualified as estimated with high bias (JH) for cadmium (if analyzed) due to high MS/MSD recoveries.

Post Digestion Spike

According to the LRC, post digestion spike (PDS) recoveries were within method acceptance limits.

Serial Dilution

According to the LRC, serial dilution (SD) percent differences (%D) were within method acceptance limits.

Laboratory Precision

Laboratory duplicate RPD using project samples were within project DQO acceptance limits, with the following exceptions.

In lab report 2310293, the laboratory duplicate RPDs for boron and calcium, performed on project samples JKS-31-20231018-CCR and JKS-51-20231018-CCR, were higher than DQO limits only for sample JKS-51-20231018-CCR. Since both laboratory duplicates were run on the same batch, only the parent sample, JKS-51-20231018-CCR, was qualified as estimated (J) for boron and calcium due to high laboratory precision RPD.

In lab report 2310294, the laboratory duplicate RPDs for arsenic, barium, boron, calcium, and molybdenum, performed on project samples JKS-31-20231018-CCR and JKS-51-20231018-CCR, were higher than DQO limits; however, only arsenic RPDs were above DQO limits for both parent samples. Affected samples in the batch had detected results less than the MQL; as such, no qualifiers were required for arsenic. Since both laboratory duplicates were run on the same batch, only the parent sample, JKS-31-20231018-CCR or JKS-51-20231018-CCR would need to be qualified for molybdenum, boron, barium, calcium, and/or lead. However, only boron and calcium were analyzed in parent sample JKS-51-20231018-CCR; as such, only boron and calcium were qualified.

In lab report 2310305, the laboratory duplicate RPD for sulfate, performed on project sample JKS-47-20231018-CCR, was higher than DQO limits. Affected samples in the batch detected at concentrations above the MQL for sulfate were qualified as estimated, J, for high laboratory precision RPD.

Field Precision

Two pairs of field precision samples were collected during the November 2023 event (JKS-56-20231017-CCR / DUP-001-20231017 and JKS-65-20231018-PDP / DUP-002-20231018). RPD calculations for detected analytes for each field precision pair are shown in Table 2. All RPD were within DQO limits or had sample concentrations less than two times the value of the MQL; as such, no qualifiers were required.

Field Procedures

Sample collection procedures were in accordance with EPA ground water sampling protocols and the *Ground Water Sampling and Analysis Program*, dated August 2023.

SUMMARY

Ground water analytical results are useable for the purpose of provide concentration data on Appendix III Coal Combustion Residuals (CCR) Rule parameters in ground water at the CPS Energy Calaveras Power Station. Table 2 lists qualified data. Tables

TABLE 1Sample Cross-Reference

CPS Energy Calaveras Power Station

Lab Report	Lab Identification	Field Identification	Sample Date	Sample Type	
2310293	2310293-01	JKS-31-20231018-CCR	10/18/2023	Groundwater	
2310293	2310293-02	JKS-33-20231017-CCR	10/17/2023	Groundwater	
2310293	2310293-03	JKS-45-20231017-CCR	10/17/2023	Groundwater	
2310293	2310293-04	JKS-46-20231017-CCR	10/17/2023	Groundwater	
2310293	2310293-05	JKS-60-20231017-CCR	10/17/2023	Groundwater	
2310294	2310294-01	JKS-48-20231017-CCR	10/17/2023	Groundwater	
2310294	2310294-02	JKS-49-20231017-CCR	10/17/2023	Groundwater	
2310294	2310294-03	JKS-50R-20231017-CCR	10/17/2023	Groundwater	
2310294	2310294-04	JKS-51-20231018-CCR	10/28/2023	Groundwater	
2310294	2310294-05	JKS-52-20231017-CCR	10/17/2023	Groundwater	
2310294	2310294-06	JKS-53-20231017-CCR	10/17/2023	Groundwater	
2310294	2310294-07	JKS-54-20231017-CCR	10/17/2023	Groundwater	
2310294	2310294-08	JKS-56-20231017-CCR	10/17/2023	Groundwater	
2310294	2310294-09	JKS-70-20231018-CCR	10/18/2023	Groundwater	
2310294	2310294-10	FB-001-20231018	10/18/2023	Field Blank	
2310294	2310294-11	DUP-001-20231017	10/17/2023	Duplicate Sample	
2310294	2310294-12	JKS-55-20231017-CCR	10/17/2023	Groundwater	
2310304	2310304-01	JKS-65-20231018-PDP	10/18/2023	Groundwater	
2310304	2310304-02	JKS-66-20231018-PDP	10/18/2023	Groundwater	
2310304	2310304-03	JKS-67-20231018-PDP	10/18/2023	Groundwater	
2310304	2310304-04	JKS-68-20231018-PDP	10/18/2023	Groundwater	
2310304	2310304-05	JKS-69-20231018-PDP	10/18/2023	Groundwater	
2310304	2310304-06	DUP-002-20231018	10/18/2023	Duplicate Sample	
2310304	2310304-07	FB-002-20231018	10/18/2023	Field Blank	
2310305	2310305-01	JKS-36-20231017-CCR	10/17/2023	Groundwater	
2310305	2310305-02	JKS-47-20231018-CCR	10/17/2023	Groundwater	
2310305	2310305-03	JKS-61-20231017-CCR	10/18/2023	Groundwater	
2310305	2310305-04	JKS-63R-20231018-CCR	10/17/2023	Groundwater	
2310305	2310305-05	JKS-64-20231018-CCR	10/18/2023	Groundwater	
2310305	2310305-06	JKS-72-20231017-CCR	10/17/2023	Groundwater	
2310305	2310305-07	EB-001-20231018-CCR	10/18/2023	Equipment Blank	

TABLE 2 Data Usability Qualifiers

CPS Energy Calaveras Power Station

Lab Report	Field ID	Parameter	Qualification	Rationale
2310304	FB-002-20231018	TDS	UJL	Outside Analysis Holding Time
2310305	JKS-36-20231017-CCR	TDS	JL	Outside Analysis Holding Time
2310305	JKS-61-20231017-CCR	TDS	JL	Outside Analysis Holding Time
2310305	JKS-72-20231017-CCR	TDS	JL	Outside Analysis Holding Time
2310305	JKS-72-20231017-CCR	Radium-226	JL	Outside Preservation Holding Time
2310305	JKS-72-20231017-CCR	Radium-228	JL	Outside Preservation Holding Time
2310305	JKS-72-20231017-CCR	Combined Radium	JL	Outside Preservation Holding Time
2310294	JKS-51-20231018-CCR	Boron	JH	High MS/MSD Recovery and High Laboratory Precision RPD
2310294	JKS-51-20231018-CCR	Calcium	J	High Laboratory Precision RPD
2310294	JKS-70-20231018-CCR	Cadmium	JH	High MS/MSD Recovery
2310294	JKS-70-20231018-CCR	Selenium	JH	High MS/MSD Recovery
2310305	JKS-36-20231017-CCR	Sulfate	J	High Laboratory Precision RPD
2310305	JKS-47-20231018-CCR	Sulfate	J	High Laboratory Precision RPD
2310305	JKS-61-20231017-CCR	Sulfate	J	High Laboratory Precision RPD
2310305	JKS-63R-20231018-CCR	Sulfate	J	High Laboratory Precision RPD
2310305	JKS-64-20231018-CCR	Sulfate	J	High Laboratory Precision RPD
2310305	JKS-72-20231017-CCR	Sulfate	J	High Laboratory Precision RPD
2310305	JKS-36-20231017-CCR	Boron	JL	Low MS/MSD Recovery
2310305	JKS-47-20231018-CCR	Boron	JL	Low MS/MSD Recovery
2310305	JKS-61-20231017-CCR	Boron	JL	Low MS/MSD Recovery
2310305	JKS-63R-20231018-CCR	Boron	JL	Low MS/MSD Recovery
2310305	JKS-64-20231018-CCR	Boron	JL	Low MS/MSD Recovery
2310305	JKS-72-20231017-CCR	Boron	JL	Low MS/MSD Recovery
2310305	EB-001-20231018-CCR	Boron	JL	Low MS/MSD Recovery
2310305	JKS-72-20231017-CCR	Antimony	UJL	Low MS/MSD Recovery
2310305	JKS-72-20231017-CCR	Barium	JL	Low MS/MSD Recovery
2310305	JKS-72-20231017-CCR	Beryllium	JL	Low MS/MSD Recovery
2310305	JKS-72-20231017-CCR	Chromium	JL	Low MS/MSD Recovery
2310305	JKS-72-20231017-CCR	Cobalt	JL	Low MS/MSD Recovery
2310305	JKS-72-20231017-CCR	Cadmium	JH	High MS/MSD Recovery

Notes:

J = Estimated

UJ = Non-detect Estimated

TABLE 3 Field Precision

CPS Energy Calaveras Power Station

	Field Duplicate							
Lab Report	Pair	Parameter	Sample Resul	lt	Duplicate Resu	lt	RPD	Qualifier
2310294	JKS-56-20231017- CCR / DUP-001- 20231017	TDS	840		780		7.41	А
		Chloride	133		131		1.52	А
		Fluoride	0.448		0.451		0.67	A
		Sulfate	0.62	J	0.62	J	0.00	А
		Boron	3.35		3.39		1.19	А
		Calcium	106		102		3.85	А
2310304	JKS-65-20231018- PDP / DUP-002- 20231018	TDS	524		511		2.51	А
		Chloride	114		104		9.17	A
		Fluoride	0.600		0.605		0.83	А
		Sulfate	62.2		56.1		10.31	А
		Arsenic	0.002	J	0.0006	J	107.69	A*
		Boron	0.273		0.284		3.95	А
		Barium	0.027		0.027		0.00	A
		Calcium	21.3		21.6		1.40	А
		Cadmium	0.0003	U	0.0004	J	28.57	A*
		Chromium	0.002	J	0.002	J	0.00	А
		Lead	0.002	J	0.006	J	100.00	A*
		Selenium	0.007	J	0.013		60.00	A*

Notes:

RPD - Relative Percent Difference

RPD = (Sample Result - Duplicate Result) x 200 / (Sample Result + Duplicate Result)

Qualifier: A = Acceptable (no qualification necessary)

 A^* = Acceptable data based on sample concentrations less than two times the MQL

J = Estimated

November 22, 2023

Chelsey Vasbinder CPS Energy - Environmental Dept. P.O. Box 1771 San Antonio, TX 78296-1771

SATL Report No.: 2310305 RE: Calaveras Power Station-CCR Units Evaporation Pond

Dear Chelsey Vasbinder

SATL received 7 Sample(s) on 10/19/2023 for analyses identified on the chain of custody. The analyses were performed using methods indicated on the laboratory report. Any deviations observed at sample receiving are notated on the Sample Receipt Checklist and/or Chain of Custody documents attached as part of this analytical report.

Sincerely,

For San Antonio Testing Laboratory, Inc.

Richard Hawk, General Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Appendix A Laboratory Data Package Cover Page

This data package consists of:

\checkmark	This signature page, the laboratory review checklist, and the following reportable data:					
\checkmark	R1	Field chain-of-custody documentation;				
\checkmark	R2	Sample identification cross-reference;				
	R3	 Test reports (analytical data sheets) for each environmental sample that includes: a) Items consistent with NELAC 5.13 or ISO/IEC 17025 Section 5.10 b) dilution factors, c) preparation methods, d) cleanup methods, and e) if required for the project, tentatively identified compounds (TICs). 				
\checkmark	R4	 Surrogate recovery data including: a) Calculated recovery (%R), and b) The laboratory's surrogate QC limits. 				
\checkmark	R5	Test reports/summary forms for blank samples;				
\checkmark	R6	 Test reports/summary forms for laboratory control samples (LCSs) including: a) LCS spiking amounts, b) Calculated %R for each analyte, and c) The laboratory's LCS QC limits. 				
	R7	 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including: a) Samples associated with the MS/MSD clearly identified, b) MS/MSD spiking amounts, c) Concentration of each MS/MSD analyte measured in the parent and spiked samples, d) Calculated %Rs and relative percent differences (RPDs), and e) The laboratory's MS/MSD QC limits 				
V	R8	 Laboratory analytical duplicate (if applicable) recovery and precision: a) the amount of analyte measured in the duplicate, b) the calculated RPD, and c) the laboratory's QC limits for analytical duplicates. 				
\checkmark	R9	List of method quantitation limits (MQLs) for each analyte for each method and matrix;				
\checkmark	R10 Other problems or anomalies.					
\checkmark	The E	xception Report for every "No" or "Not Reviewed (NR)" item in laboratory review checklist.				

Release Statement: I am responsible for the release of this laboratory data package. This data package has been reviewed by the laboratory and is complete and technically compliant with the requirements of the methods used, except where noted by the laboratory in the attached exception reports. By my signature below, I affirm to the best of my knowledge, all problems/anomalies, observed by the laboratory as having the potential to affect the quality of the data, have been identified by the laboratory in the Laboratory Review Checklist, and no information or data have been knowingly withheld that would affect the quality of the data.

Aimee Landon For Marcela Gracia Hawk, President

Richard Hawk, General Manager

Project Name: Laboratory Job Number: Calaveras Power Station-CCR Units Evaporation Pond 2310305

Reviewer Name: AO,SA,SJ Matrix :

RG-366/TRRP-13 December 2002

11/22/23 16:30

Date/Time

abor	atory N	Vame: San Antonio Testing Laboratory Inc.	LRC Date: 1	2/30/99 to 11/01/23				
	t Nam	ē ,		310305				
-	wer Na	*		343143,B343169,B3431	04 D2	44120	,	
			Prep Batch Number(s): B	<u>343143,B343109,B3431</u> Yes	No	NA ³		ER#
		Description		res	NO	NA	NK	EK
R1		Chain-of-custody (C-O-C)		V				
		Did samples meet the laboratory's standard conditions of sample accept		X				
		Were all departures from standard conditions described in an exception	report?	X				
R2		Sample and quality control (QC) identification	1 0	v	1		<u> </u>	
		Are all field sample ID numbers cross-referenced to the laboratory ID n		X				
_		Are all laboratory ID numbers cross-referenced to the corresponding Q	C data?	Х				
R3		Test reports			37			a 0.0
	-	Were all samples prepared and analyzed within holding times?			X			S00
		Other than those results < MQL, were all other raw values bracketed by	v calibration standards?	X				
		Were calculations checked by a peer or supervisor?		X				
		Were all analyte identifications checked by a peer or supervisor?		X	-			
		Were sample quantitation limits reported for all analytes not detected?		X				
		Were all results for soil and sediment samples reported on a dry weight				Х	\rightarrow	
		Were % moisture (or solids) reported for all soil and sediment samples?			<u> </u>	Х	-+	
$ \rightarrow$		If required for the project, TICs reported?				Х		
₹4		Surrogate recovery data		1	1	,	 ,	
		Were surrogates added prior to extraction?				Х		
		Were surrogate percent recoveries in all samples within the laboratory (QC limits?			Х		
85		Test reports/summary forms for blank samples						
		Were appropriate type(s) of blanks analyzed?		X				
	Ľ	Were blanks analyzed at the appropriate frequency?		X				
	Ľ	Were method blanks taken through the entire analytical process, includi	ing preparation and, if applicable, cleanup	procedures? X				
		Were blank concentrations < MQL?		Х				
R6		Laboratory control samples (LCS):			1			
	_	Were all COCs included in the LCS?		Х				
	_	Was each LCS taken through the entire analytical procedure, including	prep and cleanup steps?	Х				
	_	Were LCSs analyzed at the required frequency?		Х				
	Ľ	Were LCS (and LCSD, if applicable) %Rs within the laboratory QC lin	nits?		Х			S00
		Does the detectability data document the laboratory's capability to detect	ct the COCs at the MDL used to calculate	the SQLs?				
		Was the LCSD RPD within QC limits?		Х				
₹7		Matrix spike (MS) and matrix spike duplicate (MSD) data						
		Were the project/method specified analytes included in the MS and MS	D?	Х				
		Were MS/MSD analyzed at the appropriate frequency?		Х				
		Were MS (and MSD, if applicable) %Rs within the laboratory QC limit	is?		Х			S00
		Were MS/MSD RPDs within laboratory QC limits?		Х				
R8		Analytical duplicate data					,	
		Were appropriate analytical duplicates analyzed for each matrix?		Х				
		Were analytical duplicates analyzed at the appropriate frequency?		Х				
		Were RPDs or relative standard deviations within the laboratory QC lin	nits?		Х			S00
19		Method quantitation limits (MQLs):						
		Are the MQLs for each method analyte included in the laboratory data	package?	Х				
		Do the MQLs correspond to the concentration of the lowest non-zero ca	alibration standard?	Х				
		Are unadjusted MQLs included in the laboratory data package?		Х				
.10		Other problems/anomalies						
		Are all known problems/anomalies/special conditions noted in this LRC	C and ER?	Х				
		Were all necessary corrective actions performed for the reported data?		Х				
		Was applicable and available technology used to lower the SQL minimi			1	1		

Items identified by the letter "R' appropriate retention period. must be included in the laboratory data pa ed in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available ole upon request for the Items ident

 $2. \ \ O = organic \ analyses; \ I = inorganic \ analyses \ (and \ general \ chemistry, \ when \ applicable);$

3. NA = Not applicable;

4. NR = Not reviewed;

5. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Project Na Reviewer #1 A ² S1 S2 S3 S4 S5 S6	Name: AO,SA,SJ Description		2310305				
# ¹ A ² S1 S2 S2 S3 S3 S4 S5	2 Description						
# ¹ A ² S1 S2 S2 S3 S3 S4 S5	2 Description	Prep Batch Number(s):	B343143,B343169,B3431	94.B3	44138	}	
S1			Yes	- É	NA ³		ER#
S2 S3 S4 S5	Initial calibration (ICAL)			-			
S3 S4 S5	Were response factors and/or relative response factors for each analy	te within QC limits?	Х				
S3 S4 S5	Were percent RSDs or correlation coefficient criteria met?		Х				
S3 S4 S5	Was the number of standards recommended in the method used for a	all analytes?	Х				
S3 S4 S5	Were all points generated between the lowest and highest standard u	sed to calculate the curve?	Х				
S3 S4 S5	Are ICAL data available for all instruments used?		Х				
S3 S4 S5	Has the initial calibration curve been verified using an appropriate s	econd source standard?	Х				
S4 S5	Initial and continuing calibration verification (ICCV and CCV)		I				
S4 S5	Was the CCV analyzed at the method-required frequency?		Х				
S4 S5	Were percent differences for each analyte within the method-require	d QC limits?	Х				
S4 S5	Was the ICAL curve verified for each analyte?		Х				
S4 S5	Was the absolute value of the analyte concentration in the inorganic	CCB < MDL?	Х				
85	Mass spectral tuning:		I				
85	Was the appropriate compound for the method used for tuning?				Х		
85	Were ion abundance data within the method-required QC limits?				Х		
	Internal standards (IS):						
	Were IS area counts and retention times within the method-required	QC limits?			Х		
S6	Raw data (NELAC section 1 appendix A glossary, and section 5.	12 or ISO/IEC 17025 section					
S6	Were the raw data (for example, chromatograms, spectral data) revie	wed by an analyst?	Х				
S6	Were data associated with manual integrations flagged on the raw data	ata?			Х		
	Dual column confirmation						
	Did dual column confirmation results meet the method-required QC	?			Х		
S7	Tentatively identified compounds (TICs):						
	If TICs were requested, were the mass spectra and TIC data subject	to appropriate checks?			Х		
S8	Interference Check Sample (ICS) results:						
	Were percent recoveries within method QC limits?		Х				
S9	Serial dilutions, post digestion spikes, and method of standard a	dditions					
	Were percent differences, recoveries, and the linearity within the QC	limits specified in the method?	Х				
510	Method detection limit (MDL) studies						
	Was a MDL study performed for each reported analyte?		Х				
	Is the MDL either adjusted or supported by the analysis of DCSs?		Х				
511	Proficiency test reports:						
	Was the laboratory's performance acceptable on the applicable profi	ciency tests or evaluation studies?	Х				
512	Standards documentation						
	Are all standards used in the analyses NIST-traceable or obtained fro	om other appropriate sources?	Х				
613	Compound/analyte identification procedures						
	Are the procedures for compound/analyte identification documented	!?	Х				
614	Demonstration of analyst competency (DOC)						
	Was DOC conducted consistent with NELAC Chapter 5C or ISO/IE	C 4?	Х				
	Is documentation of the analyst's competency up-to-date and on file	?	Х				
615	Verification/validation documentation for methods (NELAC Ch	ap 5 or ISO/IEC 17025 Section 5)					
	Are all the methods used to generate the data documented, verified,	and validated, where applicable?	Х				
616	Laboratory standard operating procedures (SOPs):						

1. Items identified by the letter "R" must be included in the laboratory data package submitted in the TRRP-required report(s). Items identified by the letter "S" should be retained and made available upon request for the appropriate retention period.

2. O = organic analyses; I = inorganic analyses (and general chemistry, when applicable);

3. NA = Not applicable;

4. NR = Not reviewed;

5. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

RG-366/TRRP-13 December 2002

Laboratory	Name:	San Antonio Testing Laboratory Inc.	LRC Date:	12/30/99 to 11/01/23
Project Nan	ne:	Calaveras Power Station-CCR Units Evaporation	Laboratory Job Number:	2310305
Reviewer N	lame:	AO,SA,SJ	Prep Batch Number(s):	B343143,B343169,B343194,B344138
$\mathbf{ER}^{\mathbf{H}^{1}}$	Description			
S001	TDS analysis	on 3 samples past hold by 1 day. Data flagged on the anal	ytical report.	
S002	% Recoveries	s outside the QC acceptance criteria are flagged on the anal	ytical report.	
S003	Matrix Spike	Recoveries outside the QC acceptance criteria, due to matt	rix interferences, are flagged on th	e analytical report.
S004	RPD values a	bove the acceptance limits are flagged on the analytical rep	port.	
1. ER# = Exc	eption Report identi	fication number (an Exception Report should be completed for an item if "NR	" or "No" is checked on the LRC)	RG-366/TRRP-13 December 200

CPS Energy - Environmental Dept. P.O. Box 1771 San Antonio TX, 78296-1771 Notes:

Project: Calaveras Power Station-CCR Units Evaporation Pond Project Number: [none] Project Manager: Chelsey Vasbinder **Reported:** 11/22/23 16:30 **Received:** 10/19/23 10:22

Report No. 2310305

SAMPLE SUMMARY

Total Samples received in this work order:

Sample ID	Laboratory ID	<u>Matrix</u> Sampling M	ethod Date Sampled	Date Received
JKS-36-20231017-CCR	2310305-01	Non-potable Water Gra	ıb 10/17/23 13:27	10/19/23 10:22
JKS-47-20231018-CCR	2310305-02	Non-potable Water Gra	ub 10/18/23 09:32	10/19/23 10:22
JKS-61-20231017-CCR	2310305-03	Non-potable Water Gra	ub 10/17/23 14:27	10/19/23 10:22
JKS-63R-20231018-CCR	2310305-04	Non-potable Water Gra	ub 10/18/23 10:23	10/19/23 10:22
JKS-64-20231018-CCR	2310305-05	Non-potable Water Gra	ub 10/18/23 08:53	10/19/23 10:22
JKS-72-20231017-CCR	2310305-06	Non-potable Water Gra	ub 10/17/23 15:36	10/19/23 10:22
EB-001-20231018-CCR	2310305-07	Non-potable Water Gra	ıb 10/18/23 13:40	10/19/23 10:22

Notes

All quality control samples and checks are within acceptance limits unless otherwise indciated.

7

Test results pertain only to those items tested.

All samples were in good condition when received by the laboratory unless otherwise noted.

CPS Energy - Environmental Dept. P.O. Box 1771 San Antonio TX, 78296-1771 Notes: Project: Calaveras Power Station-CCR Units Evaporation Pond Project Number: [none] Project Manager: Chelsey Vasbinder **Reported:** 11/22/23 16:30 **Received:** 10/19/23 10:22

Sample ID #: JKS-36-20231017-CC	R			Samp	ing Method:	Grab		La	o Sample II	D #: 2310	305-01
Sample Matrix: Non-potable Water	r			Date/7	fime Collecte	d: 10/17/2	3 13:27				
Analyte	Result	MQL	Flag	MDL	SQL[SDL]	Units	PrepMethod	Method	Analyzed	Analyst	Notes
General Chemistry			Bat	ch ID > B34	3194						
Total Dissolved Solids *	1940	3.57		2.50	3.57	mg/L	SM2540C	SM2540C	10/25/23	SG	А
Anions by Ion Chromatography			Bat	ch ID > B34	4138						
Chloride *	< 0.052	0.100		0.052	0.052	mg/L	EPA 300.0	EPA 300.0	10/28/23	SA	
Fluoride	0.517	0.020		0.018	0.018	mg/L	EPA 300.0	EPA 300.0	10/28/23	SG	
Sulfate *	838	10.0		0.06	5.59	mg/L	EPA 300.0	EPA 300.0	11/01/23	SA	
Total Metals By ICP			Bat	ch ID > B34	3143						
Boron	0.368	0.010		0.0006	0.0006	mg/L	EPA 3010A	EPA 6010B	10/23/23	SJ	
Calcium *	168	1.00		0.009	0.009	mg/L	EPA 3010A	EPA 6010B	10/23/23	SJ	

CPS Energy - Environmental Dept. P.O. Box 1771 San Antonio TX, 78296-1771 Notes: Project: Calaveras Power Station-CCR Units Evaporation Pond Project Number: [none] Project Manager: Chelsey Vasbinder **Reported:** 11/22/23 16:30 **Received:** 10/19/23 10:22

Sample ID #: JKS-47-20231018-CC Sample Matrix: Non-potable Water				-	ling Method: Fime Collecte		3 09:32	Lal	b Sample II	D #: 2310.	305-02
Analyte	Result	MQL	Flag	MDL	SQL[SDL]	Units	PrepMethod	Method	Analyzed	Analyst	Notes
General Chemistry			Bate	ch ID > B34	3194						
Total Dissolved Solids *	899	2.50		2.50	2.50	mg/L	SM2540C	SM2540C	10/25/23	SG	
Anions by Ion Chromatography			Bate	ch ID > B34	4138						
Chloride *	168	0.100		0.052	0.052	mg/L	EPA 300.0	EPA 300.0	10/28/23	SA	
Fluoride	0.101	0.020		0.018	0.018	mg/L	EPA 300.0	EPA 300.0	10/28/23	SG	
Sulfate *	265	1.00		0.06	0.56	mg/L	EPA 300.0	EPA 300.0	10/30/23	SA	
Total Metals By ICP			Bate	ch ID > B34	3143						
Boron	0.761	0.010		0.0006	0.0006	mg/L	EPA 3010A	EPA 6010B	10/23/23	SJ	
Calcium *	68.8	1.00		0.009	0.009	mg/L	EPA 3010A	EPA 6010B	10/23/23	SJ	

CPS Energy - Environmental Dept. P.O. Box 1771 San Antonio TX, 78296-1771 Notes: Project: Calaveras Power Station-CCR Units Evaporation Pond Project Number: [none] Project Manager: Chelsey Vasbinder **Reported:** 11/22/23 16:30 **Received:** 10/19/23 10:22

Sample ID #: JKS-61-20231017-CC	R			Samp	ing Method:	Grab		La	o Sample II	D #: 2310	305-03
Sample Matrix: Non-potable Water	•			Date/7	fime Collecte	d: 10/17/2	3 14:27				
Analyte	Result	MQL	Flag	MDL	SQL[SDL]	Units	PrepMethod	Method	Analyzed	Analyst	Notes
General Chemistry			Bat	ch ID > B34	3194						
Total Dissolved Solids *	993	2.50		2.50	2.50	mg/L	SM2540C	SM2540C	10/25/23	SG	А
Anions by Ion Chromatography			Bat	ch ID > B34	4138						
Chloride *	< 0.052	0.100		0.052	0.052	mg/L	EPA 300.0	EPA 300.0	10/28/23	SA	
Fluoride	0.445	0.020		0.018	0.018	mg/L	EPA 300.0	EPA 300.0	10/28/23	SG	
Sulfate *	274	2.50		0.06	1.40	mg/L	EPA 300.0	EPA 300.0	10/30/23	SA	
Total Metals By ICP			Bat	ch ID > B34	3143						
Boron	1.01	0.010		0.0006	0.0006	mg/L	EPA 3010A	EPA 6010B	10/23/23	SJ	
Calcium *	82.4	1.00		0.009	0.009	mg/L	EPA 3010A	EPA 6010B	10/23/23	SJ	

CPS Energy - Environmental Dept. P.O. Box 1771 San Antonio TX, 78296-1771 Notes: Project: Calaveras Power Station-CCR Units Evaporation Pond Project Number: [none] Project Manager: Chelsey Vasbinder **Reported:** 11/22/23 16:30 **Received:** 10/19/23 10:22

Sample ID #: JKS-63R-20231018-C	CR			Samp	ing Method:	Grab		Lal	b Sample II	D #: 2310.	305-04
Sample Matrix: Non-potable Water	•			Date/7	fime Collecte	ed: 10/18/2	3 10:23				
Analyte	Result	MQL	Flag	MDL	SQL[SDL]	Units	PrepMethod	Method	Analyzed	Analyst	Notes
General Chemistry			Bat	ch ID > B34	3194						
Total Dissolved Solids *	7560	16.7		2.50	16.7	mg/L	SM2540C	SM2540C	10/25/23	SG	
Anions by Ion Chromatography			Bat	ch ID > B34	4138						
Chloride *	2730	10.0		0.052	5.19	mg/L	EPA 300.0	EPA 300.0	11/01/23	SA	
Fluoride	0.050	0.020		0.018	0.018	mg/L	EPA 300.0	EPA 300.0	10/28/23	SG	
Sulfate *	1920	5.00		0.06	2.80	mg/L	EPA 300.0	EPA 300.0	10/30/23	SA	
Total Metals By ICP			Bat	ch ID > B34	3143						
Boron	1.33	0.010		0.0006	0.0006	mg/L	EPA 3010A	EPA 6010B	10/23/23	SJ	
Calcium *	949	1.00		0.009	0.009	mg/L	EPA 3010A	EPA 6010B	10/23/23	SJ	

CPS Energy - Environmental Dept. P.O. Box 1771 San Antonio TX, 78296-1771 Notes: Project: Calaveras Power Station-CCR Units Evaporation Pond Project Number: [none] Project Manager: Chelsey Vasbinder **Reported:** 11/22/23 16:30 **Received:** 10/19/23 10:22

Sample ID #: JKS-64-20231018-CC Sample Matrix: Non-potable Water				-	ling Method: Fime Collecte		3 08:53	Lal	b Sample II	D #: 2310	305-05
Analyte	Result	MQL	Flag	MDL	SQL[SDL]	Units	PrepMethod	Method	Analyzed	Analyst	Notes
General Chemistry			Bat	c h ID > B34	3194						
Total Dissolved Solids *	560	2.50		2.50	2.50	mg/L	SM2540C	SM2540C	10/25/23	SG	
Anions by Ion Chromatography			Bat	c h ID > B34	4138						
Chloride *	22.4	0.100		0.052	0.052	mg/L	EPA 300.0	EPA 300.0	10/28/23	SA	
Fluoride	0.110	0.020		0.018	0.018	mg/L	EPA 300.0	EPA 300.0	10/28/23	SG	
Sulfate *	205	1.00		0.06	0.56	mg/L	EPA 300.0	EPA 300.0	10/30/23	SA	
Total Metals By ICP			Bat	c h ID > B34	3143						
Boron	0.741	0.010		0.0006	0.0006	mg/L	EPA 3010A	EPA 6010B	10/23/23	SJ	
Calcium *	23.8	1.00		0.009	0.009	mg/L	EPA 3010A	EPA 6010B	10/23/23	SJ	

CPS Energy - Environmental Dept. P.O. Box 1771 San Antonio TX, 78296-1771 Notes: Project: Calaveras Power Station-CCR Units Evaporation Pond Project Number: [none] Project Manager: Chelsey Vasbinder **Reported:** 11/22/23 16:30 **Received:** 10/19/23 10:22

Sample ID #: JKS-72-20231017-CC	CR			Sampl	ing Method:	Grab		Lal	o Sample II	D #: 2310	305-06
Sample Matrix: Non-potable Wate	r			Date/1	Time Collecte	ed: 10/17/2	3 15:36				
Analyte	Result	MQL	Flag	MDL	SQL[SDL]	Units	PrepMethod	Method	Analyzed	Analyst	Notes
General Chemistry				Batch ID > B34	3194						
Total Dissolved Solids *	3150	6.25		2.50	6.25	mg/L	SM2540C	SM2540C	10/25/23	SG	А
Anions by Ion Chromatography				Batch ID > B34	4138						
Chloride *	351	10.0		0.052	5.19	mg/L	EPA 300.0	EPA 300.0	10/30/23	SA	
Fluoride	< 0.018	0.020		0.018	0.018	mg/L	EPA 300.0	EPA 300.0	10/28/23	SG	
Sulfate *	1710	10.0		0.06	5.59	mg/L	EPA 300.0	EPA 300.0	10/30/23	SA	
Total Mercury				Batch ID > B34	3169						
Mercury	< 0.0001	0.0002		0.0001	0.0001	mg/L	EPA 7470A	EPA 7470A	10/24/23	AO	
Total Metals By ICP				Batch ID > B34	3143						
Arsenic	0.002	0.010	J	0.0006	0.0006	mg/L	EPA 3010A	EPA 6010B	10/23/23	SJ	
Boron	4.44	0.010		0.0006	0.0006	mg/L	EPA 3010A	EPA 6010B	10/23/23	SJ	
Barium	0.054	0.010		0.003	0.003	mg/L	EPA 3010A	EPA 6010B	10/23/23	SJ	
Beryllium	0.0006	0.004	J	0.0003	0.0003	mg/L	EPA 3010A	EPA 6010B	10/23/23	SJ	
Calcium *	388	1.00		0.009	0.009	mg/L	EPA 3010A	EPA 6010B	10/23/23	SJ	
Cadmium	0.003	0.005	J	0.0003	0.0003	mg/L	EPA 3010A	EPA 6010B	10/23/23	SJ	
Cobalt	0.012	0.010		0.0003	0.0003	mg/L	EPA 3010A	EPA 6010B	10/23/23	SJ	
Chromium	0.001	0.010	J	0.0003	0.0003	mg/L	EPA 3010A	EPA 6010B	10/23/23	SJ	
Molybdenum	0.006	0.010	J	0.0003	0.0003	mg/L	EPA 3010A	EPA 6010B	10/23/23	SJ	
Lead *	0.008	0.010	J	0.0003	0.0003	mg/L	EPA 3010A	EPA 6010B	10/23/23	SJ	
Antimony	< 0.002	0.010		0.002	0.002	mg/L	EPA 3010A	EPA 6010B	10/23/23	SJ	
Selenium	0.044	0.010		0.002	0.002	mg/L	EPA 3010A	EPA 6010B	10/23/23	SJ	
Thallium	< 0.0009	0.010		0.0009	0.0009	mg/L	EPA 3010A	EPA 6010B	10/23/23	SJ	

CPS Energy - Environmental Dept. P.O. Box 1771 San Antonio TX, 78296-1771 Notes: Project: Calaveras Power Station-CCR Units Evaporation Pond Project Number: [none] Project Manager: Chelsey Vasbinder **Reported:** 11/22/23 16:30 **Received:** 10/19/23 10:22

Sample ID #: EB-001-20231018-CC Sample Matrix: Non-potable Water				-	ling Method: Fime Collecto		3 13:40	Lal	b Sample II	D #: 2310	305-07
Analyte	Result	MQL	Flag	MDL	SQL[SDL]	Units	PrepMethod	Method	Analyzed	Analyst	Notes
General Chemistry				Batch ID > B34	3194						
Total Dissolved Solids *	< 2.50	2.50		2.50	2.50	mg/L	SM2540C	SM2540C	10/25/23	SG	
Anions by Ion Chromatography				Batch ID > B34	4138						
Chloride *	< 0.052	0.100		0.052	0.052	mg/L	EPA 300.0	EPA 300.0	10/28/23	SA	
Fluoride	< 0.018	0.020		0.018	0.018	mg/L	EPA 300.0	EPA 300.0	10/28/23	SG	
Sulfate *	< 0.06	0.10		0.06	0.06	mg/L	EPA 300.0	EPA 300.0	10/28/23	SA	
Total Metals By ICP				Batch ID > B34	3143						
Boron	0.007	0.010	J	0.0006	0.0006	mg/L	EPA 3010A	EPA 6010B	10/23/23	SJ	
Calcium *	0.122	1.00	J	0.009	0.009	mg/L	EPA 3010A	EPA 6010B	10/23/23	SJ	

CPS Energy - Environmental Dept. P.O. Box 1771 San Antonio TX, 78296-1771 Notes: Project: Calaveras Power Station-CCR Units Evaporation Pond Project Number: [none] Project Manager: Chelsey Vasbinder **Reported:** 11/22/23 16:30 **Received:** 10/19/23 10:22

Report No. 2310305

General Chemistry - Quality Control

		Reporting		Spike	Source		%REC		RPD
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch B343194 - SM2540C									
Blank (B343194-BLK1)				Prepared: 1	0/25/23 09	:48 Analyz	ed: 10/25/23	17:46	
Total Dissolved Solids	<2.50	2.50	mg/L				-		
LCS (B343194-BS1)				Prepared: 1	0/25/23 09	:48 Analyz	ed: 10/25/23	17:46	
Total Dissolved Solids	96.0	2.50	mg/L	100		96	80-120		
LCS Dup (B343194-BSD1)				Prepared: 1	0/25/23 09	:48 Analyz	ed: 10/25/23	17:46	
Total Dissolved Solids	94.0	2.50	mg/L	100		94	80-120	2	20
Duplicate (B343194-DUP1)		Source: 2310305-0)1	Prepared: 1	0/25/23 09	:48 Analyz	ed: 10/25/23	17:46	
Total Dissolved Solids	1920	3.57	mg/L		1940		-	1	20

CPS Energy - Environmental Dept. P.O. Box 1771 San Antonio TX, 78296-1771 Notes: Project: Calaveras Power Station-CCR Units Evaporation Pond Project Number: [none] Project Manager: Chelsey Vasbinder **Reported:** 11/22/23 16:30 **Received:** 10/19/23 10:22

Report No. 2310305

Anions by Ion Chromatography - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	
Batch B344138 - EPA 300.0										
Blank (B344138-BLK1)				Prepared:	10/27/23 14	4:19 Analy	zed: 10/27/23 1	17:41		
Fluoride	<0.020	0.020	mg/L				-			
Chloride	< 0.100	0.100	mg/L				-			
Sulfate	< 0.10	0.10	mg/L				-			
LCS (B344138-BS1)				Prepared:	10/27/23 14	4:19 Analy	zed: 10/27/23 1	17:59		
Fluoride	0.919	0.020	mg/L	1.00		92	90-110			
Chloride	4.69	0.100	mg/L	5.00		94	90-110			
Sulfate	4.90	0.10	mg/L	5.00		98	90-110			
LCS Dup (B344138-BSD1)				Prepared:	10/27/23 14	4:19 Analy	zed: 10/27/23 1	18:17		
Fluoride	0.916	0.020	mg/L	1.00		92	90-110	0.3	20	
Chloride	4.70	0.100	mg/L	5.00		94	90-110	0.2	20	
Sulfate	4.90	0.10	mg/L	5.00		98	90-110	0.1	20	
Duplicate (B344138-DUP1)		Source: 2310305-	02	Prepared:	10/27/23 14	4:19 Analy	zed: 10/28/23 ()2:39		
Fluoride	0.101	0.020	mg/L		0.101		-	0.2	20	
Chloride	168	0.100	mg/L		168		-	0.08	20	
Sulfate	379	0.10	mg/L		265		-	35	20	
Matrix Spike (B344138-MS1)		Source: 2310305-	02	Prepared:	10/27/23 14	4:19 Analy	zed: 10/28/23 ()2:57		
Fluoride	0.998	0.020	mg/L	1.00	0.101	90	80-120			
Chloride	166	0.100	mg/L	5.00	168	NR	80-120]
Sulfate	367	0.10	mg/L	5.00	265	NR	80-120			1
Matrix Spike Dup (B344138-M	SD1)	Source: 2310305-	02	Prepared:	10/27/23 14	4:19 Analy	zed: 10/28/23 ()3:33		
Fluoride	1.00	0.020	mg/L	1.00	0.101	90	80-120	0.2	20	
Chloride	165	0.100	mg/L	5.00	168	NR	80-120	0.8	20]
Sulfate	366	0.10	mg/L	5.00	265	NR	80-120	0.1	20]

CPS Energy - Environmental Dept. P.O. Box 1771 San Antonio TX, 78296-1771 Notes: Project: Calaveras Power Station-CCR Units Evaporation Pond Project Number: [none] Project Manager: Chelsey Vasbinder **Reported:** 11/22/23 16:30 **Received:** 10/19/23 10:22

Report No. 2310305

Total Mercury - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	
Batch B343169 - EPA 7470A										
Blank (B343169-BLK1)				Prepared:	10/24/23 11	:30 Analyz	ed: 10/24/23	15:36		
Mercury	< 0.0002	0.0002	mg/L				-			
LCS (B343169-BS1)				Prepared:	10/24/23 11	:30 Analyz	ed: 10/24/23	15:42		
Mercury	0.0116	0.0002	mg/L	0.0100		116	85-115			I
LCS Dup (B343169-BSD1)				Prepared: 1	10/24/23 11	:30 Analyz	ed: 10/24/23	15:44		
Mercury	0.0116	0.0002	mg/L	0.0100		116	85-115	0.1	25	L
Duplicate (B343169-DUP1)		Source: 2310294-0	19	Prepared:	10/24/23 11	:30 Analyz	ed: 10/24/23	15:48		
Mercury	< 0.0002	0.0002	mg/L		< 0.0002		-		25	
Matrix Spike (B343169-MS1)		Source: 2310294-0	19	Prepared:	10/24/23 11	:30 Analyz	ed: 10/24/23	15:50		
Mercury	0.00919	0.0002	mg/L	0.0100	< 0.0002	92	75-125			
Matrix Spike Dup (B343169-MSD1)		Source: 2310294-0	19	Prepared:	10/24/23 11	:30 Analyz	ed: 10/24/23	15:53		
Mercury	0.00908	0.0002	mg/L	0.0100	< 0.0002	91	75-125	1	25	

CPS Energy - Environmental Dept. P.O. Box 1771 San Antonio TX, 78296-1771 Notes: Project: Calaveras Power Station-CCR Units Evaporation Pond Project Number: [none] Project Manager: Chelsey Vasbinder **Reported:** 11/22/23 16:30 **Received:** 10/19/23 10:22

Report No. 2310305

Total Metals By ICP - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch B343143 - EPA 3010A									
Blank (B343143-BLK1)				Prepared: 1	0/23/23 12	:30 Analyz	ed: 10/23/23	13:14	
Antimony	< 0.010	0.010	mg/L				-		
Arsenic	< 0.010	0.010	mg/L				-		
Barium	< 0.010	0.010	mg/L				-		
Beryllium	< 0.004	0.004	mg/L				-		
Boron	< 0.010	0.010	mg/L				-		
Cadmium	< 0.005	0.005	mg/L				-		
Calcium	<1.00	1.00	mg/L				-		
Chromium	< 0.010	0.010	mg/L				-		
Cobalt	< 0.010	0.010	mg/L				-		
Lead	< 0.010	0.010	mg/L				-		
Molybdenum	< 0.010	0.010	mg/L				-		
Selenium	< 0.010	0.010	mg/L				-		
Thallium	< 0.010	0.010	mg/L				-		
LCS (B343143-BS1)				Prepared: 1	0/23/23 12	:30 Analyz	ed: 10/23/23	13:25	
Antimony	2.08	0.010	mg/L	2.00		104	85-115		
Arsenic	2.05	0.010	mg/L	2.00		103	85-115		
Barium	2.01	0.010	mg/L	2.00		100	85-115		
Beryllium	2.05	0.004	mg/L	2.00		103	85-115		
Boron	2.08	0.010	mg/L	2.00		104	85-115		
Cadmium	1.96	0.005	mg/L	2.00		98	85-115		
Calcium	2.04	1.00	mg/L	2.00		102	85-115		
Chromium	1.97	0.010	mg/L	2.00		99	85-115		
Cobalt	2.08	0.010	mg/L	2.00		104	85-115		
Lead	2.07	0.010	mg/L	2.00		103	85-115		
Molybdenum	2.07	0.010	mg/L	2.00		104	85-115		
Selenium	2.00	0.010	mg/L	2.00		100	85-115		
Fhallium	2.04	0.010	mg/L	2.00		102	85-115		

CPS Energy - Environmental Dept. P.O. Box 1771 San Antonio TX, 78296-1771 Notes: Project: Calaveras Power Station-CCR Units Evaporation Pond Project Number: [none] Project Manager: Chelsey Vasbinder **Reported:** 11/22/23 16:30 **Received:** 10/19/23 10:22

Report No. 2310305

Total Metals By ICP - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch B343143 - EPA 3010A									
LCS Dup (B343143-BSD1)				Prepared: 1	10/23/23 12:	30 Analyz	ed: 10/23/23 1	3:31	
Antimony	2.11	0.010	mg/L	2.00		106	85-115	2	20
Arsenic	2.13	0.010	mg/L	2.00		107	85-115	4	20
Barium	2.04	0.010	mg/L	2.00		102	85-115	2	20
Beryllium	2.14	0.004	mg/L	2.00		107	85-115	4	20
Boron	2.13	0.010	mg/L	2.00		106	85-115	3	20
Cadmium	2.08	0.005	mg/L	2.00		104	85-115	6	20
Calcium	2.14	1.00	mg/L	2.00		107	85-115	5	20
Chromium	2.07	0.010	mg/L	2.00		103	85-115	5	20
Cobalt	2.14	0.010	mg/L	2.00		107	85-115	3	20
Lead	2.15	0.010	mg/L	2.00		107	85-115	4	20
Molybdenum	2.16	0.010	mg/L	2.00		108	85-115	4	20
Selenium	2.10	0.010	mg/L	2.00		105	85-115	4	20
Thallium	2.12	0.010	mg/L	2.00		106	85-115	4	20
Duplicate (B343143-DUP1)		Source: 2310305-()1	Prepared: 1	10/23/23 12:	30 Analyz	ed: 10/23/23 1	9:57	
Antimony	<0.010	0.010	mg/L		<0.010		_		20
Arsenic	0.00750	0.010	mg/L		0.00830		-	10	20
Barium	0.0259	0.010	mg/L		0.0259		-	0	20
Beryllium	0.0155	0.004	mg/L		0.0155		-	0	20
Boron	0.369	0.010	mg/L		0.368		-	0.3	20
Cadmium	0.00110	0.005	mg/L		0.00100		-	10	20
Calcium	170	1.00	mg/L		168		-	1	20
Chromium	0.00570	0.010	mg/L		0.00560		-	2	20
Cobalt	0.121	0.010	mg/L		0.121		-	0.3	20
Lead	0.0141	0.010	mg/L		0.0145		-	3	20
Molybdenum	0.000700	0.010	mg/L		0.000800		-	13	20
Selenium	< 0.010	0.010	mg/L		< 0.010		-		20
Fhallium	< 0.010	0.010	mg/L		< 0.010		-		20

CPS Energy - Environmental Dept. P.O. Box 1771 San Antonio TX, 78296-1771 Notes: Project: Calaveras Power Station-CCR Units Evaporation Pond Project Number: [none] Project Manager: Chelsey Vasbinder **Reported:** 11/22/23 16:30 **Received:** 10/19/23 10:22

Report No. 2310305

Total Metals By ICP - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	
Batch B343143 - EPA 3010A										
Matrix Spike (B343143-MS1)		Source: 2310305-	01	Prepared:	10/23/23 12	:30 Analyz	zed: 10/23/23 2	0:03		
Antimony	1.11	0.010	mg/L	2.00	< 0.010	56	75-125			М
Arsenic	1.52	0.010	mg/L	2.00	0.00830	75	75-125			
Barium	1.12	0.010	mg/L	2.00	0.0259	55	75-125			М
Beryllium	1.17	0.004	mg/L	2.00	0.0155	58	75-125			М
Boron	1.63	0.010	mg/L	2.00	0.368	63	75-125			М
Cadmium	3.52	0.005	mg/L	2.00	0.00100	176	75-125			М
Calcium	170	1.00	mg/L	2.00	168	140	75-125			М
Chromium	1.20	0.010	mg/L	2.00	0.00560	60	75-125			М
Cobalt	1.24	0.010	mg/L	2.00	0.121	56	75-125			М
Lead	2.07	0.010	mg/L	2.00	0.0145	103	75-125			
Molybdenum	2.34	0.010	mg/L	2.00	0.000800	117	75-125			
Selenium	2.21	0.010	mg/L	2.00	< 0.010	110	75-125			
Thallium	2.17	0.010	mg/L	2.00	< 0.010	108	75-125			
Matrix Spike Dup (B343143-MSD1)		Source: 2310305-	01	Prepared:	10/23/23 12	:30 Analyz	zed: 10/23/23 2	0:09		
Antimony	1.16	0.010	mg/L	2.00	< 0.010	58	75-125	4	20	М
Arsenic	1.51	0.010	mg/L	2.00	0.00830	75	75-125	0.07	20	
Barium	1.13	0.010	mg/L	2.00	0.0259	55	75-125	0.5	20	М
Beryllium	1.16	0.004	mg/L	2.00	0.0155	57	75-125	0.9	20	М
Boron	1.62	0.010	mg/L	2.00	0.368	63	75-125	0.3	20	М
Cadmium	3.35	0.005	mg/L	2.00	0.00100	167	75-125	5	20	М
Calcium	161	1.00	mg/L	2.00	168	NR	75-125	5	20	М
Chromium	1.14	0.010	mg/L	2.00	0.00560	57	75-125	5	20	М
Cobalt	1.24	0.010	mg/L	2.00	0.121	56	75-125	0.5	20	М
Lead	2.04	0.010	mg/L	2.00	0.0145	101	75-125	1	20	
Molybdenum	2.30	0.010	mg/L	2.00	0.000800	115	75-125	2	20	
Selenium	2.18	0.010	mg/L	2.00	< 0.010	109	75-125	2	20	
Thallium	2.14	0.010	mg/L	2.00	< 0.010	107	75-125	1	20	

Project: Calaveras Power Station-CCR Units Evaporation

Reported:

11/22/23 16:30

Received:

10/19/23 10:22

Report No. 2310305

CPS Energy - Environmental Dept. P.O. Box 1771 San Antonio TX, 78296-1771

Notes:

SAMPLE QUALIFIERS

A Sample was analyzed past hold time

DEFINITIONS

DEFINIT	UNS
*	TNI / NELAC accredited analyte
PQL	Practical Quantitation Limit
MCL	Maximum Contaminant Level
mg/Kg	Milligrams per Kilogram (Parts per Million)
mg/L	Milligrams per Liter (Parts per Million)
PPM	Parts per Million
ND	This qualifier indicates that the analyte was analyzed but not detected above the MDL
J	This qualifier indicates that the analyte is an estimate value between MQL and MDL
SQL	Sample Quantitation Limit
MQL	Method Quantitation Limit
MDL	Method Detection Limit
L	LCS/LCSD recovery is outside QC limits, the results may have a slight bias.
М	MS/MSD recovery is outside QC limits due to possible matrix interferences, results may have a slight bias .
S	RPD is outside QC limits.
RMCCL	Recommended Maximum Concentration of Contaminants Level
$\mu R/hr$	MicroRoentgens per hour (Measure of Radioactivity Level)
HT	Sample received past holdtime
IC	Improper Container for this analyte(s)
IT	Improper Temperature
IP	Improper preservation for this analyte(s)
V	Insufficient Volume
В	Sample collected in Bulk
AB	VOA Vial contained air bubbles.
OP	ortho-Phosphate was not filtered in the field within 15minutes of collection.
CCV	Continuing Calibration Verification Standard.
ICV	Initial Calibration Verification Standard.
Surr L	Surrogate recovery is low outside QC limits.
Surr H	Surrogate recovery is high outside QC limits.
NR	Not Recovered due to source sample concentration exceeds spiked concentration.

Pond

Project Number: [none]

Project Manager: Chelsey Vasbinder

Test Methods followed by the laboratory are referenced in the following approved methodology, unless otherwise specified.

Standard Methods for the Examination of Water and Wastewater, 23rd Edition, 2017

Methods for Chemical Analysis of Water and Wastes, EPA 600/4-79-020, Rev. March 1983

EPA SW Test Methods for the Examination of Solid Waste, SW-846, 1996

CPS Energy - Environmental Dept. P.O. Box 1771 San Antonio TX, 78296-1771

Notes:

Project: Calaveras Power Station-CCR Units Evaporation Pond Project Number: [none] Project Manager: Chelsey Vasbinder **Reported:** 11/22/23 16:30 **Received:** 10/19/23 10:22

Report No. 2310305

Subcontracted Analyses

Subcontractor Lab	Lab Number	Analysis
Eurofins - St. Louis	2310305-06	Li_T
Eurofins - St. Louis	2310305-06	Radium 226_SUB
Eurofins - St. Louis	2310305-06	Radium 228_SUB

Aimee Landon For Marcela Gracia Hawk, President For

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Richard Hawk, General Manager

Sub	mission key K292-IAM-801U	On 10/19/2023 08:21	By Chelsey Vasbinder	010305 Page 1/2
P.O. San Pho	Client Information Energy - Environmental Dept. Box 1771 Antonio TX 78296-1771 ne: (210) 353-4719 (210) 353-4271	Project Information Calaveras Power Station-CCR Unit: Evaporation Pond Number: [none] Sample count: 7 TAT: 7	Laboratory Information San Antonio Testing Laboratory 1610 S. Laredo St San Antonio TX 78207 Phone: 210-229-9920 Fax: 210-229-9921	COC Information Shipped via: Hand Delivered
#1	JKS-36-20231017-CCR 10/17/2023 13:27 Grab / Non-potable Water	B_T TAT: 7 Ca_T TAT: 7 Chloride_IC TAT Fluoride_IC TAT Sulfate_IC TAT: TDS TAT: 7	: 7	Containers 250 mL Plastic HNO3 (1) 1 L Plastic Unpreserved (1)
	Comments: TRRP REPORTIN	IG		
#2	JKS-47-20231018-CCR 10/18/2023 09:32 Grab / Non-potable Water	B_T TAT: 7 Ca_T TAT: 7 Chloride_IC TAT Fluoride_IC TAT Sulfate_IC TAT: TDS TAT: 7	: 7	Containers 250 mL Plastic HNO3 (1) 1 L Plastic Unpreserved (1)
	Comments: TRRP REPORTIN	IG		
#3	JKS-61-20231017-CCR 10/17/2023 14:27 Grab / Non-potable Water	B_T TAT: 7 Ca_T TAT: 7 Chloride_IC TAT Fluoride_IC TAT Sulfate_IC TAT: TDS TAT: 7	: 7	Containers 250 mL Plastic HNO3 (1) 1 L Plastic Unpreserved (1)
-	Comments: TRRP REPORTIN	G		
4	JKS-63R-20231018-CCR 10/18/2023 10:23 Grab / Non-potable Water	B_T TAT: 7 Ca_T TAT: 7 Chloride_IC TAT Fluoride_IC TAT: Sulfate_IC TAT: 7 TDS TAT: 7	7	Containers 250 mL Plastic HNO3 (1) 1 L Plastic Unpreserved (1)
	Comments: TRRP REPORTIN	G		
5	JKS-64-20231018-CCR 10/18/2023 08:53 Grab / Non-potable Water	B_T TAT: 7 Ca_T TAT: 7 Chloride_IC TAT: Fluoride_IC TAT: Sulfate_IC TAT: 7 TDS TAT: 7	7	Containers 250 mL Plastic HNO3 (1) 1 L Plastic Unpreserved (1)
	Comments: TRRP REPORTING	G		
6	JKS-72-20231017-CCR 10/17/2023 15:36 Grab / Non-potable Water	As_T TAT: 7 B_T TAT: 7 Ba_T TAT: 7 Be_T TAT: 7 Be_T TAT: 7 Cd_T TAT: 7 Cd_T TAT: 7 Chloride_IC TAT: Co_T TAT: 7 Cr_T TAT: 7 Fluoride_IC TAT: Hg_T TAT: 7 Li_T TAT: 7 Subo Mo_T TAT: 7		Containers 250 mL Plastic HNO3 (1) 1 L Plastic Unpreserved (1) 1 Gallon Plastic (1)

EnviroChain[®] By Promium

Subm	ission key K292-IAM-801U	On 10/19/2023 08:21	By Chelsey Vasbinder		Page 2/2
		Se_T TAT: Sulfate_IC TDS TAT: 7 TI_T TAT: 7	TAT: 7		
and	Comments: TRRP REPORTING	G - Radium 226 & 228 Combined			
#7	EB-001-20231018-CCR 10/18/2023 13:40 Grab / Non-potable Water	B_T TAT: 7 Ca_T TAT: Chloride_IC Fluoride_IC Sulfate_IC T TDS TAT: 7	7 TAT: 7 TAT: 7 FAT: 7		Containers astic HNO3 (1) c Unpreserved (1)
sub L	aboratory:	3 - Radium 226 & 228 Combined Eurofins - St. Louis 13715 Rider Trail North	B		
		Earth City MO 63045 Number: (314) 298-8566 Laboratory: -			
3	1,4°C /3.4°C TO	5#7			
1	Relinquished by	Date/Ti	me	Accepted by	Date/Time
E	Partin E	J Partidge 10-19-23	823 LANCE Smore	Janhan	10/15/23 082
	<i>n</i> 1 <i>i i</i>	10-19:23	0111	A / /	0000

Sample Receipt Checklist

	- Environmental Dept. ower Station-CCR Units Evapora	Project Manager: Marcela Grac Project Number: [none]	ia Hawk
Report To: Chelsey Vasbinder		SATL Report Number:	2310305
Work Order Due by: Received By: Logged In By:	10/30/23 17:00 (7 day TAT) Aimee Landon Aimee Landon	Date Received: 10/19/23 10:22 Date Logged In: 10/19/23 11:03	
Sample(s) Received on	ICE/evidence of Ice (cooler with me	Ited ice,etc):	Yes
Sample temperature at	receipt *:		3.4°C
Custody Seals Present:			No
All containers intact:	19		Yes
Sample labels/COC agi	ee:		Yes
Samples Received with	in Holding time :		Yes
Samples appropriately	preserved **:		Yes
Containers received bro	oken/damaged/leaking:		No
Air bubbles present in '	VOA vials for VOC/TPH analyses, if	applicable:	Not Applicable
TRRP 13 Reporting rec	uested?		Yes
BacT Sample bottles fi	led to volume (100mL mark), if appl	icable:	Not Applicable
LCR Sample bottles fil	led to volume (1 Liter mark), if applic	cable:	Not Applicable
Subcontracting required	for any analyses:		Yes
RUSH turnaround time	requested:		No
Requested Turnaround	Time:		No
Samples delivered via :			Hand Delivered
Air bill included if Sam	ples were shipped:		No
Other deviations not me	eeting SATL sample acceptance criter	ia notated on CoC:	None

Notes:

* Samples delivered to the laboratory on the same day that they are collected may not meet thermal preservation criteria (>0°C but <6°C) but are acceptable, if they arrive on ice.

** If improperly preserved, notate client authorization on CoC to proceed with analysis.

Checked By: ______Aimee Landon

Date :

10/19/23 10:22

SATL#FO001 Revised 09/15/2022

Fax (210) 229-9921 (210) 229-9920 1610 S. Laredo Street, San Antonio, Texas 78207-7029 Page 24 of 43 www.satestinglab.com

Environment Testing

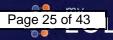
ANALYTICAL REPORT

PREPARED FOR

Attn: Marcela Hawk San Antonio Testing Laboratory, Inc. 1610 S Laredo Street San Antonio, Texas 78207 Generated 11/22/2023 4:10:26 PM

JOB DESCRIPTION

Radiological Sampling


JOB NUMBER

160-51921-1

Eurofins St. Louis 13715 Rider Trail North Earth City MO 63045

See page two for job notes and contact information.

Eurofins St. Louis

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins TestAmerica Project Manager.

Authorization

Zhonda Ridenhouer

Generated 11/22/2023 4:10:26 PM

Authorized for release by Rhonda Ridenhower, Business Unit Manager <u>Rhonda.Ridenhower@et.eurofinsus.com</u> Designee for Micha Korrinhizer, Project Manager <u>Micha.Korrinhizer@et.eurofinsus.com</u> (314)298-8566

Table of Contents

Table of Contents3Case Narrative4Chain of Custody6Receipt Checklists7Definitions/Glossary8Method Summary9Sample Summary10
Chain of Custody6Receipt Checklists7Definitions/Glossary8Method Summary9
Receipt Checklists7Definitions/Glossary8Method Summary9
Definitions/Glossary 8 Method Summary 9
Method Summary 9
Sample Summary 10
Client Sample Results 1 ⁷
QC Sample Results 12
QC Association Summary 14
Tracer Carrier Summary 15
State Forms
TRRP Checklist 16

Job ID: 160-51921-1

Laboratory: Eurofins St. Louis

Narrative

CASE NARRATIVE

Client: San Antonio Testing Laboratory, Inc.

Project: Radiological Sampling

Report Number: 160-51921-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition, all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method.

Eurofins Environment Testing attests to the validity of the laboratory data generated by Eurofins facilities reported herein. All analyses performed by Eurofins Environment Testing facilities were done using established laboratory SOPs that incorporate QA/QC procedures described in the application methods. Eurofins Environment Testing's operations groups have reviewed the data for compliance with the laboratory QA/QC plan, and data have been found to be compliant with laboratory protocols unless otherwise noted below.

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report.

Calculations are performed before rounding to avoid round-off errors in calculated results.

Proper preservation was noted for the methods performed on these samples, unless otherwise detailed below.

All soil/sediment sample results for radiochemistry analyses are based upon sample as dried and disaggregated with the exception of tritium, carbon-14, and iodine-129 by gamma spectroscopy unless requested as wet weight by the client.

Any minimum detectable concentration (MDC), critical value (DLC), or Safe Drinking Water Act detection limit (SDWA DL) is sample-specific unless otherwise stated elsewhere in this narrative.

Radiochemistry sample results are reported with the count date/time applied as the Activity Reference Date.

This laboratory report is confidential and is intended for the sole use of Eurofins TestAmerica and its client.

Receipt

The sample was received on 10/23/2023 12:00 PM. Unless otherwise noted below, the sample arrived in good condition and properly preserved and on ice. The temperature of the cooler at receipt time was 20.0°C

Receipt Exceptions:

The reference method requires samples to have a pH of less than 2. The following sample was received with a pH of 7: 2310305-06 (JKS-72-20231017-CCR) (160-51921-1). The samples were adjusted to the appropriate pH in the laboratory.

Lithium is not listed on the COC, but requested by the client via email.

Metals

The following samples was diluted due to the presence of calcium which interferes with lithium: 2310305-06 (JKS-72-20231017-CCR) (160-51921-1). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Job ID: 160-51921-1 (Continued)

Laboratory: Eurofins St. Louis (Continued)

Gas Flow Proportional Counter

Radium-228 prep batch 633410:

The following sample did not meet the requested limit (RL) due to the reduced sample volume attributed to the presence of matrix interference. During preparation the analyst visually noted matrix effects. The data have been reported with this narrative. 2310305-06 (JKS-72-20231017-CCR) (160-51921-1)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

13

SAN ANTONIO	COMPANY SAT		COMPANY SAI		_	REPORT NUMBER	~
_	ADDRESS		ADDRESS				
1610 S. Laredo Street, San Antonio, Texas 78207	CITY STATE	ZIP	CITY	STATE ZIP	E-MAIL	II.	
(210) 229-9920 • Fax (210) 229-9921 www.satestinglab.com	ATTN PHIMEL F	PHONE #	ATTNE 120/20/201	PHONE #			
	REQUESTED TURNAROUND TIME IN BUSINESS DAYS & SURCHARGE	ц 7-10 Days ц 5 Days REG +25%	□ 4 Days □ 3 DAYS +50% +75%	N L 2 DAYS L	I SAME	DAY WHEN POSSIBLE +300%	
PROJECT NAME/LOCATION/SITE	THE TURNAROUND TIME FOR SAMPLES RE	RECEIVED AFTER 3:00 PM SHALL	L BEGIN AT 8:00 AM THE FOLLOWING BUSINESS	DAY	SPECIAL REQ.		
	DATA TO TCEQ D RRC D Other (Specify)	ecity) J	Field: pH:	Temp:C; LCS/D		Dup:	
PROJECT NO	SAMPLE TEMPERATURE WITHIN COMPLIAN PROPER CONTAINERS INTACT	IANCE (> 0°C ≤ 6°C) LI YES LI	D NO INSUFFICIENT SAMPLE	INSUFFICIENT SAMPLE FOR (TCLP/SPLP/OTHER): I	U YES U NO	AUTHORIZE TO PROCEED	
SAMPLED BY		GUN # SAMPLE ICED		PST PCLS	TSDF CI	u U	
COLLECTED				ANALYSIS F	JEST	ED	C
	SAMPLE	0-ΝΨ 00ΖΗ 4-ΖΨΕ 04ΞΩΙΞΨ 00ΖΗ 4-ΖΨΕ0 23ΞΩΨΕ ΟΕ 23ΞΩΨΕ ΟΕ	10,000,000,000,000,000,000,000,000,000,	Selection Selection <t< td=""><td>lengt / sTarce</td><td>PRESER WITH WITH PARTING PARTI</td><td>073335055 073955355</td></t<>	lengt / sTarce	PRESER WITH WITH PARTING PARTI	073335055 073955355
(a) 171201526 Y	177-FIOLEGOG-CF-SAL	2 ICalGI	11	4		1111 B310305	0506
							0
	160-51921 Chain of Custody		7212	2 Reporting			
			Equiss 11/4 2	1002 X	did		
	RECEIVED RY (SJANATURE)	DATE / TIME RELINO	RELINQUISHED BY (SIGNATURE)	DATE / TIME RECI	RECEIVED BY (SIGNATURE)		DATE / TIME
introduction of the wheel with the states interesting	_	DATE / TIME RELINO	RELINQUISHED BY (PRINT NAME)	DATE / TIME RECI	RECEIVED BY (PRINT NAME		DATE / TIME
ELINOUISHED BY (SIGNATURE) DATE / TIME	WATER BY (SIGNATURE)	A 1 BIESTIME WETHOU	METHOD OF SHIPMENT	SUB	SUBCONTRACTED	ON L VO	
ELINQUISHED BY (PRINT NAME) DATE / TIME	RECEIVED BY (PRINT NAME)	h	N/A L 5035 (Initial) L	b	CUSTODY SEAL IN PLACE & INTACT	U YES	ON L

Login Sample Receipt Checklist

Client: San Antonio Testing Laboratory, Inc.

Login Number: 51921 List Number: 1 Creator: Korrinhizer, Micha L

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	The pH was adjusted upon receipt.
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 160-51921-1

List Source: Eurofins St. Louis

Limit of Quantitation (DoD/DOE)

Method Detection Limit

Minimum Level (Dioxin)

Most Probable Number

Not Calculated

Negative / Absent

Positive / Present

Presumptive

Quality Control

Method Quantitation Limit

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

EPA recommended "Maximum Contaminant Level"

Minimum Detectable Concentration (Radiochemistry)

Not Detected at the reporting limit (or MDL or EDL if shown)

Minimum Detectable Activity (Radiochemistry)

Qualifiers

LOQ

MCL

MDA

MDC

MDL

ML

MPN

MQL

NC

ND NEG

POS

PQL PRES

QC

RER

RL RPD

TEF

TEQ

TNTC

	Definitions/Glossary		1
	ntonio Testing Laboratory, Inc. Radiological Sampling	Job ID: 160-51921-1	2
Qualifiers			3
Metals			
Qualifier	Qualifier Description		4
	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.		
Rad			5
Qualifier	Qualifier Description		
G	The Sample MDC is greater than the requested RL.		6
U	Result is less than the sample detection limit.		
Glossary			7
Abbreviation	These commonly used abbreviations may or may not be present in this report.		8
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis		6
%R	Percent Recovery		9
CFL	Contains Free Liquid		-0
CFU	Colony Forming Unit		1
CNF	Contains No Free Liquid		
DER	Duplicate Error Ratio (normalized absolute difference)		4
Dil Fac	Dilution Factor		
DL	Detection Limit (DoD/DOE)		
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample		1
DLC	Decision Level Concentration (Radiochemistry)		
EDL	Estimated Detection Limit (Dioxin)		1
LOD	Limit of Detection (DoD/DOE)		

Method Summary

Client: San Antonio Testing Laboratory, Inc. Project/Site: Radiological Sampling

Method	Method Description	Protocol	Laboratory
6010D	Metals (ICP)	SW846	EET SL
903.0	Radium-226 (GFPC)	EPA	EET SL
904.0	Radium-228 (GFPC)	EPA	EET SL
Ra226_Ra228	Combined Radium-226 and Radium-228	TAL-STL	EET SL
010A	Preparation, Total Metals	SW846	EET SL
PrecSep_0	Preparation, Precipitate Separation	None	EET SL
PrecSep-21	Preparation, Precipitate Separation (21-Day In-Growth)	None	EET SL

Protocol References:

EPA = US Environmental Protection Agency

None = None

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. TAL-STL = TestAmerica Laboratories, St. Louis, Facility Standard Operating Procedure.

Laboratory References:

EET SL = Eurofins St. Louis, 13715 Rider Trail North, Earth City, MO 63045, TEL (314)298-8566

13

Eurofins St. Louis

Sample Summary

Client: San Antonio Testing Laboratory, Inc. Project/Site: Radiological Sampling

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
160-51921-1	2310305-06 (JKS-72-20231017-CCR)	Water	10/17/23 15:36	10/23/23 12:00

Job ID: 160-51921-1

	Matrix	Collected	Received
1017-CCR)	Water	10/17/23 15:36	10/23/23 12:00

Client Sample Results

Client: San Antonio Testing Laboratory, Inc. Project/Site: Radiological Sampling

Job ID: 160-51921-1

Client Sample ID: 2310305-06 (JKS-72-20231017-CCR)

Lab Sample ID: 160-51921-1

Nethod: SW846	6010D - Meta		• Ovalifiar		וח		/IDL Unit	1	п	Dremarad	Analyzad	
Analyte			t Qualifier		RL 250			-	D	Prepared 11/08/23 11:55	Analyzed 11/22/23 12:03	Dil Fac 5
.ithium		160	J		250		75 ug/L			11/06/23 11:55	11/22/23 12.05	5
Method: EPA 90	3.0 - Radium	-226 (GFPC)	,									
		•	Count	Total								
			Uncert.	Uncert.								
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)		RL	MDC			Prepared	Analyzed	Dil Fac
Radium-226	2.14		0.443	0.483	,	1.00	0.292	pCi/L		10/25/23 11:00	11/21/23 09:30	1
Carrier	%Yield	Qualifier	Limits							Prepared	Analyzed	Dil Fac
Ba Carrier	75.3		30 - 110							10/25/23 11:00	11/21/23 09:30	1
Method: EPA 90	4 0 - Radium	-228 (GFPC)	4									
		L (C · · · <i>c</i>)	Count	Total								
			Uncert.	Uncert.								
Analyte	Result	Qualifier	(2 σ+/-)	(2 σ+/-)		RL	MDC	Unit		Prepared	Analyzed	Dil Fac
Radium-228	3.59	G	1.32	1.36		1.00	1.69	pCi/L		10/25/23 11:05	11/15/23 11:38	1
Carrier	%Yield	Qualifier	Limits							Prepared	Analyzed	Dil Fac
Ba Carrier	75.3		30 - 110							10/25/23 11:05	11/15/23 11:38	1
Y Carrier	71.0		30 - 110							10/25/23 11:05	11/15/23 11:38	1

			Count	Total						
			Uncert.	Uncert.						
Analyte	Result	Qualifier	(2σ+/-)	(2σ+/-)	RL	MDC	Unit	Prepared	Analyzed	Dil Fac
Combined Radium 226 + 228	5.73		1.39	1.44	5.00	1.69	pCi/L		11/22/23 11:07	1

Eurofins St. Louis

Method: 6010D - Metals (ICP)

Lab Sample ID: MB 16	60-6358	57/1-A						Cli		le ID: Meth		
Matrix: Water										Prep Type		
Analysis Batch: 6379	56									Prep Batc	h: 635	857
			MB MB									
Analyte		Re	sult Qualif	ier		MDL Unit			Prepared	Analyzed		Fac
Lithium			ND		50	15 ug/L		11/	08/23 11:55	11/22/23 09:	20	1
Lab Sample ID: LCS 1	160-635	857/2-A					Cli	ent Sa	mple ID:	Lab Contro	ol Sam	ple
Matrix: Water										Prep Type	: Total	/NA
Analysis Batch: 6379	56									Prep Batc	h: <mark>635</mark>	857
				Spike	LCS	LCS				%Rec		
Analyte				Added	Result	Qualifier	Unit	D	%Rec	Limits		_
Lithium				100	86.8		ug/L		87	80 - 120		
Lab Sample ID: 160-5	1920-A-	-1-D MS						С	lient Sam	ple ID: Ma	trix Sp	oike
Matrix: Water										Prep Type	: Total	/NA
Analysis Batch: 6379	56									Prep Batc	h: 635	857
-		Sample	Sample	Spike	MS	MS				%Rec		
Analyte		Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Lithium		22		100	138		ug/L		116	75 - 125		
Lithium	1920 A			100	138		Ū	t Samı			Dunlic	ato
Lithium Lab Sample ID: 160-5	1920-A-			100	138		Ū	t Samı	ole ID: Ma	trix Spike		
Lithium Lab Sample ID: 160-5 Matrix: Water				100	138		Ū	t Samı	ole ID: Ma	trix Spike Prep Type	: Total	/NA
Lithium Lab Sample ID: 160-5		-1-E MSD				Med	Ū	t Samı	ole ID: Ma	trix Spike Prep Type Prep Batc	: Total h: 635	/NA 857
Lithium Lab Sample ID: 160-5 Matrix: Water Analysis Batch: 6379		-1-E MSD Sample	Sample	Spike	MSD	MSD Qualifier	Clien		ole ID: Ma	trix Spike Prep Type Prep Batc %Rec	: Total h: 635	/NA 857 RPD
Lithium Lab Sample ID: 160-5 Matrix: Water Analysis Batch: 6379 Analyte		-1-E MSD Sample Result		Spike Added	MSD Result	MSD Qualifier	Clien		ole ID: Ma	trix Spike Prep Type Prep Batc %Rec Limits	: Total h: 635 RPD L	/NA 857 RPD _imit
Lithium Lab Sample ID: 160-5 Matrix: Water Analysis Batch: 6379 Analyte Lithium	56	-1-E MSD Sample Result 22	Sample Qualifier	Spike	MSD	-	Clien		ole ID: Ma	trix Spike Prep Type Prep Batc %Rec	: Total h: 635	/NA 857 RPD
Lithium Lab Sample ID: 160-5 Matrix: Water Analysis Batch: 6379 Analyte Lithium	56	-1-E MSD Sample Result 22	Sample Qualifier	Spike Added	MSD Result	-	Clien		ole ID: Ma	trix Spike Prep Type Prep Batc %Rec Limits	: Total h: 635 RPD L	/NA 857 RPD _imit
Lithium Lab Sample ID: 160-5 Matrix: Water Analysis Batch: 6379 Analyte	56 dium-2	-1-E MSD Sample Result 22 226 (GF	Sample Qualifier	Spike Added	MSD Result	-	Clien	D	ble ID: Ma	trix Spike Prep Type Prep Batc %Rec Limits	: Total h: 635 <u>RPD</u> _ L 1	/NA 857 RPD _imit 20
Lithium Lab Sample ID: 160-5 Matrix: Water Analysis Batch: 6379 Analyte Lithium Vethod: 903.0 - Rac	56 dium-2	-1-E MSD Sample Result 22 226 (GF	Sample Qualifier	Spike Added	MSD Result	-	Clien	D	ble ID: Ma	trix Spike Prep Type Prep Batc %Rec Limits 75-125	: Total h: 635 <u>RPD</u> <u>L</u> 1	/NA 857 RPD _imit 20 ank
Lithium Lab Sample ID: 160-5 Matrix: Water Analysis Batch: 6379 Analyte Lithium Method: 903.0 - Rac Lab Sample ID: MB 16	56 	-1-E MSD Sample Result 22 226 (GF	Sample Qualifier	Spike Added	MSD Result	-	Clien	D	ble ID: Ma	htrix Spike Prep Type Prep Batc %Rec Limits 75 - 125	: Total h: 635 RPD L 1	/NA 857 RPD _imit 20 ank /NA
Lithium Lab Sample ID: 160-5 Matrix: Water Analysis Batch: 6379 Analyte Lithium Vethod: 903.0 - Rac Lab Sample ID: MB 16 Matrix: Water	56 	-1-E MSD Sample Result 22 226 (GF	Sample Qualifier	Spike Added 100	MSD Result	-	Clien	D	ble ID: Ma	htrix Spike Prep Type Prep Batc %Rec Limits 75 - 125	: Total h: 635 RPD L 1	/NA 857 RPD _imit 20 ank /NA
Lithium Lab Sample ID: 160-5 Matrix: Water Analysis Batch: 6379 Analyte Lithium Vethod: 903.0 - Rac Lab Sample ID: MB 16 Matrix: Water	56 	-1-E MSD Sample Result 22 226 (GF	Sample Qualifier PC)	Spike Added 100	MSD Result	-	Clien	D	ble ID: Ma	htrix Spike Prep Type Prep Batc %Rec Limits 75 - 125	: Total h: 635 RPD L 1	/NA 857 RPD _imit 20 ank /NA
Lithium Lab Sample ID: 160-5 Matrix: Water Analysis Batch: 6379 Analyte Lithium Vethod: 903.0 - Rac Lab Sample ID: MB 16 Matrix: Water	56 dium-2 60-6334 33 MB	-1-E MSD Sample Result 22 226 (GF	Sample Qualifier PC)	Spike Added 100 t Total . Uncert.	MSD Result	-	Clien Unit ug/L	<u>D</u>	ble ID: Ma	htrix Spike Prep Type Prep Batc %Rec Limits 75 - 125	: Total h: 635 <u>RPD</u> 1 nod Bl : Total h: 633	/NA 857 RPD _imit 20 ank /NA
Lithium Lab Sample ID: 160-5 Matrix: Water Analysis Batch: 63798 Analyte Lithium Method: 903.0 - Rac Lab Sample ID: MB 16 Matrix: Water Analysis Batch: 63773 Analyte	56 dium-2 60-6334 33 MB	-1-E MSD Sample Result 22 226 (GF 03/1-A MB Qualifier	Sample Qualifier PC) Count Uncert	Spike Added 100 t Total . Uncert. . .	MSD Result 139	Qualifier	Unit	D Cli	ole ID: Ma	Atrix Spike Prep Type Prep Batc %Rec Limits 75-125	: Total h: 635 <u>RPD</u> 1 nod Bl : Total h: 633 Dil	/NA 857 RPD _imit 20 ank /NA 403
Lithium Lab Sample ID: 160-5 Matrix: Water Analysis Batch: 63798 Analyte Lithium Method: 903.0 - Rac Lab Sample ID: MB 16 Matrix: Water Analysis Batch: 63773 Analyte	56 dium-2 60-6334 33 MB <u>Result</u> 0.02040	-1-E MSD Sample Result 22 226 (GF 03/1-A MB Qualifier U	Sample Qualifier PC) Count Uncert. (2σ+/-)	Spike Added 100 t Total . Uncert.) (2σ+/-)	MSD Result 139 RL	Qualifier	Unit	D Cli	ole ID: Ma	Atrix Spike Prep Type Prep Batc %Rec Limits 75-125	: Total h: 635 <u>RPD</u> 1 nod Bl : Total h: 633 Dil	/NA 857 RPD _imit 20 ank /NA 403
Lithium Lab Sample ID: 160-5 Matrix: Water Analysis Batch: 63798 Analyte Lithium Method: 903.0 - Rac Lab Sample ID: MB 16 Matrix: Water Analysis Batch: 63773 Analyte	56 dium-2 60-6334 33 MB Result 0.02040 <i>MB</i>	-1-E MSD Sample Result 22 226 (GF 03/1-A MB Qualifier U MB	Sample Qualifier PC) Count Uncert. (2σ+/-)	Spike Added 100 t Total . Uncert.) (2σ+/-)	MSD Result 139 RL	Qualifier	Unit	D Cli 	ole ID: Ma	Atrix Spike Prep Type Prep Batc %Rec Limits 75-125	: Total h: 635 <u>RPD</u> 1 1 nod Bl : Total h: 633 <u>30</u>	/NA 857 RPD _imit 20 ank /NA 403

Lab Sample ID: LCS 160-633403/2-A **Matrix: Water** Analysis Batch: 637733

Analysis B	atch: 637733									Prep Bat	ch: 633403
-					Total						
		Spike	LCS	LCS	Uncert.					%Rec	
Analyte		Added	Result	Qual	(2σ+/-)	RL	MDC	Unit	%Rec	Limits	
Radium-226		11.3	10.71		1.14	1.00	0.113	pCi/L	94	75 - 125	
	LCS LCS										
Carrier	Viold Qualifier	Limite									

Carrier	/o neiu	Quaimer	Linits
Ba Carrier	94.7		30 - 110

Eurofins St. Louis

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Method: 903.0 - Radium-226 (GFPC) (Continued)

Lab Sample		1922-A	-4-B DU								ample ID: Du	
Matrix: Wate											Prep Type: T	
Analysis Ba	atch: 6377	33									Prep Batch:	63340
						Total						
	Sample	Sample)	DU	DU	Uncert.						REF
Analyte	Result	t Qual		Result	Qual	(2 σ+/-)	RL	MDC	Unit		REI	R Limi
Radium-226	0.213	3		0.1515		0.101	1.00	0.139	pCi/L		0.3	1
	DU	DU										
Carrier	%Yield	Qualifier	Limits									
Ba Carrier	96.7		30 - 110	-								
lethod: 90	94.0 - Ra	dium-2	228 (GFPC	;)								
Lab Sample	D: MB 1	60-6334	10/1-A						Cli	ent Samp	ole ID: Method	d Blan
Matrix: Wate											Prep Type: T	
Analysis Ba		63									Prep Batch:	
				Count	Total						•	
		MB	МВ	Uncert.	Uncert.							
Analyte		Result	Qualifier	(2 σ+/-)	(2 σ+/-)	RL	MDC	Unit	P	repared	Analyzed	Dil Fa
Radium-228		0.3448		0.307	0.309	1.00	0.481	pCi/L	10/2	25/23 11:05	11/15/23 11:38	
		МВ	МВ									
Carrier		%Yield	Qualifier	Limits					F	Prepared	Analyzed	Dil Fa
Ba Carrier		98.2		30 - 110					10/2	25/23 11:05	11/15/23 11:38	
Y Carrier		74.8		30 - 110					10/2	25/23 11:05	11/15/23 11:38	
Lab Sample	D: LCS	160-633	410/2-A					Clie	ent Sa	mple ID:	Lab Control	Sample
Matrix: Wate											Prep Type: T	
Analysis Ba		63										
Analysis Ba		63				Total					Prep Batch:	
Analysis Ba		63	Spike	LCS	LCS	Total Uncert.						
Analysis Ba		63	Spike Added	LCS Result			RL	MDC	Unit	%Rec	Prep Batch:	
		63	•			Uncert.	RL 1.00	MDC 0.507			Prep Batch: %Rec	
Analyte			Added	Result		Uncert. (2σ+/-)				%Rec	Prep Batch: %Rec Limits	
Analyte	etch: 6368 	LCS	Added 7.72	Result		Uncert. (2σ+/-)				%Rec	Prep Batch: %Rec Limits	
Analyte Radium-228	etch: 6368 		Added 7.72	Result		Uncert. (2σ+/-)				%Rec	Prep Batch: %Rec Limits	
Analyte Radium-228 Carrier	LCS %Yield	LCS	Added 7.72	Result		Uncert. (2σ+/-)				%Rec	Prep Batch: %Rec Limits	
Analyte Radium-228 Carrier Ba Carrier Y Carrier	LCS <u>%Yield</u> 94.7 82.6	LCS Qualifier	Added 7.72 Limits 30 - 110 30 - 110	Result		Uncert. (2σ+/-)				<mark>%Rec</mark> 107	Prep Batch: %Rec Limits 75 - 125	633410
Analyte Radium-228 Carrier Ba Carrier Y Carrier Lab Sample	LCS <u>%Yield</u> 94.7 82.6 HD: 160-5	LCS Qualifier	Added 7.72 Limits 30 - 110 30 - 110	Result		Uncert. (2σ+/-)				- <u>%Rec</u> 107 -	Prep Batch: %Rec Limits 75-125	63341(
Analyte Radium-228 Carrier Ba Carrier Y Carrier	LCS <u>%Yield</u> 94.7 82.6 DI: 160-5 er	LCS Qualifier	Added 7.72 Limits 30 - 110 30 - 110	Result		Uncert. (2σ+/-)				- <u>%Rec</u> 107 -	Prep Batch: %Rec Limits 75 - 125	63341(
Analyte Radium-228 Carrier Ba Carrier Y Carrier Lab Sample Matrix: Wate	LCS <u>%Yield</u> 94.7 82.6 DID: 160-5 er atch: 6368	LCS Qualifier 1922-A-	Added 7.72 Limits 30 - 110 30 - 110 -4-D DU	Result 8.279	Qual	Uncert. (2σ+/-) 1.17				- <u>%Rec</u> 107 -	Prep Batch: %Rec Limits 75-125	63341(otal/N/ 63341(
Analyte Radium-228 <i>Carrier</i> Ba Carrier Y Carrier Lab Sample Matrix: Wate Analysis Ba	LCS <u>%Yield</u> 94.7 82.6 1D: 160-5 er atch: 6368 Sample	LCS Qualifier 1922-A- 63 Sample	Added 7.72 Limits 30 - 110 30 - 110 -4-D DU	Result 8.279	Qual	Uncert. (2σ+/-) 1.17 Total Uncert.	1.00	0.507	pCi/L	- <u>%Rec</u> 107 -	Prep Batch: %Rec Limits 75-125 Gample ID: Du Prep Type: T Prep Batch:	633410 otal/NA 633410 REF
Analyte Radium-228 <i>Carrier</i> Ba Carrier Y Carrier Lab Sample Matrix: Wate Analysis Ba	LCS <u>%Yield</u> 94.7 82.6 ID: 160-5 er atch: 6368 Sample Result	LCS Qualifier 1922-A 63 Sample t Qual	Added 7.72 Limits 30 - 110 30 - 110 -4-D DU	Result	Qual	Uncert. (2σ+/-) 1.17 Total Uncert. (2σ+/-)	1.00	0.507	pCi/L	- <u>%Rec</u> 107 -	Prep Batch: %Rec Limits 75-125 Gample ID: Du Prep Type: T Prep Batch: REI	e3341(otal/N/ e3341(REF
Analyte Radium-228 <i>Carrier</i> Ba Carrier Y Carrier Lab Sample Matrix: Wate Analysis Ba	LCS <u>%Yield</u> 94.7 82.6 1D: 160-5 er atch: 6368 Sample	LCS Qualifier 1922-A 63 Sample t Qual	Added 7.72 Limits 30 - 110 30 - 110 -4-D DU	Result 8.279	Qual	Uncert. (2σ+/-) 1.17 Total Uncert.	1.00	0.507	pCi/L	- <u>%Rec</u> 107 -	Prep Batch: %Rec Limits 75-125 Gample ID: Du Prep Type: T Prep Batch:	e3341(otal/N/ e3341(REI
Analyte Radium-228 <i>Carrier</i> Ba Carrier Y Carrier Lab Sample Matrix: Wate Analysis Ba	LCS <u>%Yield</u> 94.7 82.6 ID: 160-5 er atch: 6368 Sample Result	LCS Qualifier 1922-A 63 e Sample t Qual	Added 7.72 Limits 30 - 110 30 - 110 -4-D DU	Result	Qual	Uncert. (2σ+/-) 1.17 Total Uncert. (2σ+/-)	1.00	0.507	pCi/L	- <u>%Rec</u> 107 -	Prep Batch: %Rec Limits 75-125 Gample ID: Du Prep Type: T Prep Batch: REI	e3341(otal/N/ e3341(REF
Analyte Radium-228 <i>Carrier</i> Ba Carrier Y Carrier Lab Sample Matrix: Wate Analysis Ba	LCS <u>%Yield</u> 94.7 82.6 1D: 160-5 er 1ch: 6368 Sample Result 0.562 DU	LCS Qualifier 1922-A 63 e Sample t Qual	Added 7.72 <u>Limits</u> 30 - 110 30 - 110 -4-D DU	Result	Qual	Uncert. (2σ+/-) 1.17 Total Uncert. (2σ+/-)	1.00	0.507	pCi/L	- <u>%Rec</u> 107 -	Prep Batch: %Rec Limits 75-125 Gample ID: Du Prep Type: T Prep Batch: REI	e3341(otal/N/ e3341(REF

Y Carrier 83.4 30 - 110

Eurofins St. Louis

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Prep Type

Total/NA

Matrix

Water

Water

Water

Water

Water

Matrix

Water

Water

Water

Water

Matrix

Water

Client Sample ID

Lab Control Sample

Matrix Spike Duplicate

Client Sample ID

Lab Control Sample

Matrix Spike Duplicate

Client Sample ID

Method Blank

Matrix Spike

Method Blank

Matrix Spike

2310305-06 (JKS-72-20231017-CCR)

2310305-06 (JKS-72-20231017-CCR)

Prep Batch

Prep Batch

635857

635857

635857

635857

Prep Batch

635857

Method

3010A

3010A

3010A

3010A

3010A

Method

6010D

6010D

6010D

6010D

Method

6010D

9 10 11 12

13

Rad

Metals

Prep Batch: 635857

MB 160-635857/1-A

LCS 160-635857/2-A

160-51920-A-1-D MS

160-51920-A-1-E MSD

Analysis Batch: 637956

Lab Sample ID

Lab Sample ID

Lab Sample ID

160-51921-1

MB 160-635857/1-A

LCS 160-635857/2-A

160-51920-A-1-D MS

160-51920-A-1-E MSD

Analysis Batch: 637987

160-51921-1

Prep Batch: 633403

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
160-51921-1	2310305-06 (JKS-72-20231017-CCR)	Total/NA	Water	PrecSep-21	
MB 160-633403/1-A	Method Blank	Total/NA	Water	PrecSep-21	
LCS 160-633403/2-A	Lab Control Sample	Total/NA	Water	PrecSep-21	
160-51922-A-4-B DU	Duplicate	Total/NA	Water	PrecSep-21	

Lab Sample ID 160-51921-1	Client Sample ID 2310305-06 (JKS-72-20231017-CCR)	Prep Type Total/NA	Matrix Water	Method PrecSep_0	Prep Batch
MB 160-633410/1-A	Method Blank	Total/NA	Water	PrecSep_0	
LCS 160-633410/2-A	Lab Control Sample	Total/NA	Water	PrecSep_0	
160-51922-A-4-D DU	Duplicate	Total/NA	Water	PrecSep_0	

Eurofins St. Louis

Tracer/Carrier Summary

Client: San Antonio Testing Laboratory, Inc. Project/Site: Radiological Sampling Job ID: 160-51921-1

Prep Type: Total/NA

Method: 903.0 - Radium-226 (GFPC)

Matrix: Water

_				Percent Yield (Acceptance Limits)	
		Ва			
Lab Sample ID	Client Sample ID	(30-110)			
160-51921-1	2310305-06 (JKS-72-20231017-	75.3			
160-51922-A-4-B DU	Duplicate	96.7			
LCS 160-633403/2-A	Lab Control Sample	94.7			
MB 160-633403/1-A	Method Blank	98.2			
Tracer/Carrier Legen	d				
Ba = Ba Carrier					
Method: 904.0 - F	Radium-228 (GFPC)				-
latrix: Water				Prep Type: Total/N	
-				Percent Yield (Acceptance Limits)	Í
		Ва	Y		
Lab Sample ID	Client Sample ID	(30-110)	(30-110)		
160-51921-1	2310305-06 (JKS-72-20231017-	75.3	71.0		
160-51922-A-4-D DU	Duplicate	96.7	83.4		
LCS 160-633410/2-A	Lab Control Sample	94.7	82.6		
MB 160-633410/1-A	Method Blank	98.2	74.8		

Tracer/Carrier Legend

Ba = Ba Carrier

Y = Y Carrier

Eurofins St. Louis

Appendix A Laboratory Data Package Cover Page - Page 1 of 4

This data package is for Eurofins St. Louis job number 160-51921-1 and consists of:

- R1 Field chain-of-custody documentation;
- ☑ R2 Sample identification cross-reference;
- ☑ R3 Test reports (analytical data sheets) for each environmental sample that includes:
 - a. Items consistent with NELAC Chapter 5,
 - b. dilution factors,
 - c. preparation methods,
 - d. cleanup methods, and
 - e. if required for the project, tentatively identified compounds (TICs).
- R4 Surrogate recovery data including:
 - a. Calculated recovery (%R), and
 - b. The laboratory's surrogate QC limits.
- ☑ R5 Test reports/summary forms for blank samples;
- ☑ R6 Test reports/summary forms for laboratory control samples (LCSs) including:
 - a. LCS spiking amounts,
 - b. Calculated %R for each analyte, and
 - c. The laboratory's LCS QC limits.
- R7 Test reports for project matrix spike/matrix spike duplicates (MS/MSDs) including:
 - a. Samples associated with the MS/MSD clearly identified,
 - b. MS/MSD spiking amounts,
 - c. Concentration of each MS/MSD analyte measured in the parent and spiked samples,
 - d. Calculated %Rs and relative percent differences (RPDs), and
 - e. The laboratory's MS/MSD QC limits
- R8 Laboratory analytical duplicate (if applicable) recovery and precision:
 - a. The amount of analyte measured in the duplicate,
 - b. The calculated RPD, and
 - c. The laboratory's QC limits for analytical duplicates.
- R9 List of method quantitation limits (MQLs) and detectability check sample results for each analyte for each method and matrix.
- ☑ R10 Other problems or anomalies.

The Exception Report for each "No" or "Not Reviewed (NR)" item in Laboratory Review Checklist and for each analyte, matrix, and method for which the laboratory does not hold NELAC accreditation under the Texas Laboratory Accreditation Program.

Release Statement: I am responsible for the release of this laboratory data package. This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted in the Exception Reports. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory in the Exception Reports. By my signature below, I affirm to the best of my knowledge all problems/anomalies observed by the laboratory have been identified in the Laboratory Review Checklist, and no information affecting the quality of the data has been knowingly withheld.

Micha Korrinhizer Name (printed)

		ী
	Signature	

11/22/2023 Date

Project Manager

Official Title (printed)

2

3

Laboratory Review Checklist: Reportable Data - Page 2 of 4

_aboratory Name:	Eurofins St. Louis	LRC Date:	11/22/2023					
Project Name:	Radiological Sampling		160-51921-1					
Reviewer Name:	Micha Korrinhizer							
	•							
# ¹ A ²		Description		Yes	No	NA ³	NR^4	ER#⁵
	custody (C-O-C)							
	les meet the laboratory's standard condition			Х				
	departures from standard conditions descri	bed in an exception report?		Х				
	nd quality control (QC) identification							
	Id sample ID numbers cross-referenced to			X				
	poratory ID numbers cross-referenced to th	e corresponding QC data?		Х				
R3 OI Test repo		ling times?		V				
	samples prepared and analyzed within hold	-		X X				
	n those results < MQL, were all other raw v culations checked by a peer or supervisor?	alues blackeled by calibration standards?		X				
	analyte identifications checked by a peer of	supervisor?		X				
	analyte identifications checked by a peer of a			X				
	results for soil and sediment samples report			^		Х		
	noisture (or solids) reported for all soil and	, ,				X	┝──┦	
	· · · · ·	extracted with methanol per SW846 Method 5	035?			X		
	for the project, are TICs reported?					X		
	e recovery data							
	rogates added prior to extraction?					Х		
	rogate percent recoveries in all samples wi	thin the laboratory QC limits?				Х		
	orts/summary forms for blank samples	•						
Were app	ropriate type(s) of blanks analyzed?			Х				
Were blan	nks analyzed at the appropriate frequency?			Х				
Were me	hod blanks taken through the entire analyt	ical process, including preparation and, if app	olicable, cleanup					
procedure				Х				
	nk concentrations < MQL?			Х				
	ry control samples (LCS):							
	COCs included in the LCS?			Х				
		ocedure, including prep and cleanup steps?		X				
	Ss analyzed at the required frequency?			X				
	6 (and LCSD, if applicable) %Rs within the			Х				
	detectability check sample data document te the SDLs?	the laboratory's capability to detect the COC	s at the MDL used					
	_CSD RPD within QC limits?			Х		Х		
	ike (MS) and matrix spike duplicate (MS	D) data				^		
	project/method specified analytes included					Х		
	/MSD analyzed at the appropriate frequence					X		
	(and MSD, if applicable) %Rs within the la					X		
	/MSD RPDs within laboratory QC limits?					X		
	I duplicate data							
	propriate analytical duplicates analyzed for	each matrix?				Х		
	lytical duplicates analyzed at the appropria					Х		
	Ds or relative standard deviations within th					Х		
R9 OI Method o	uantitation limits (MQLs):							
Are the M	QLs for each method analyte included in the	ne laboratory data package?		Х				
	QLs correspond to the concentration of the			Х				
Are unad	usted MQLs and DCSs included in the lab	pratory data package?		Х				
	blems/anomalies							
Are all kn	own problems/anomalies/special condition	s noted in this LRC and ER?		Х				
		ver the SDL to minimize the matrix interferen	ce effects on the					
sample re					Х		\vdash	R10B
	-	Laboratory Accreditation Program for the an	alytes, matrices					
	ods associated with this laboratory data pa			Х				
	-	the laboratory data package submitted in the		ort(s). I	tems			
	-	de available upon request for the appropriate	e retention period.					
	nic analyses; I = inorganic analyses (and g	eneral chemistry, when applicable);						
3. NA = Not								
4. NR = Not								
	contion Donort identification number (on E	vegetion Papart should be completed for an i	tom it "NU" or "No" io	chool	od)			

5. ER# = Exception Report identification number (an Exception Report should be completed for an item if "NR" or "No" is checked).

Laboratory Review checklist: Supporting Data - Page 3 of 4

Laborato	ry Name:	Eurofins St. Louis	LRC Date:	11/22/2023					
Project N		Radiological Sampling	Laboratory Job Number:	160-51921-1					
Reviewe		Micha Korrinhizer		100-51921-1					
(Colewe	manie.		1						
# ¹ A ²		Description			Yes	No	NA ³	NR ⁴	ER# ⁵
		bration (ICAL)			Tes	NO	NA	ININ	
			achita within OC limita?		Х				
		onse factors and/or relative response factors for each an ent RSDs or correlation coefficient criteria met?	laryte within QC limits?		X				
		umber of standards recommended in the method used f	or all analytoo?		X				
			•	2	X				
		oints generated between the lowest and highest standar	d used to calculate the curve	5 {	X				
		data available for all instruments used? itial calibration curve been verified using an appropriate :	and any second and a		X				
-		iliai calibration curve been venned using an appropriates	second source standard?		<u>^</u>				
		$\mathbf{I}_{\mathbf{C}}$	d continuing colibration k	lenk (CCD)					
52 OI		I continuing calibration verification (ICV and CCV) ar	id continuing calibration b	iank (CCB):	V				
		CCV analyzed at the method-required frequency?			X				
		cent differences for each analyte within the method-requi			X				
		CAL curve verified for each analyte?			X				
<u>eo I o</u>		bsolute value of the analyte concentration in the inorgan	IC COB < IVIDE?		Х				
S3 O		ctral tuning					v	\vdash	
		ppropriate compound for the method used for tuning?					X		
		abundance data within the method-required QC limits?					Х	┝──┤	
S4 O		tandards (IS)			_		V		
		rea counts and retention times within the method-require	a QC limits?		_		Х		
S5 OI		(NELAC Section 5.5.10)			X				
		raw data (for example, chromatograms, spectral data) re			X				
		associated with manual integrations flagged on the raw	data?		Х				
S6 O		mn confirmation							
		olumn confirmation results meet the method-required Q0	??				Х		
S7 O		ly identified compounds (TICs)							
I:		re requested, were the mass spectra and TIC data subje	ect to appropriate checks?				Х		
S8		ce Check Sample (ICS) results							
		cent recoveries within method QC limits?			X				
S9		utions, post digestion spikes, and method of standar			_		V		
		cent differences, recoveries, and the linearity within the C	C limits specified in the met	hod?			Х		
510 OI		etection limit (MDL) studies							
		DL study performed for each reported analyte?			X				
		either adjusted or supported by the analysis of DCSs?			X				
511 01		cy test reports	<u></u>		, v				
		aboratory's performance acceptable on the applicable pro	officiency tests or evaluation	studies?	Х				
512 0		s documentation	for some the second state						
240 0		ndards used in the analyses NIST-traceable or obtained	from other appropriate sour	ces?	X	<u> </u>			
513 O	-	d/analyte identification procedures	10			ļ			
044 lo:		ocedures for compound/analyte identification documente	90?		X	ļ		$ \vdash $	
514 UI		ration of analyst competency (DOC)							
		conducted consistent with NELAC Chapter 5?			X				
		ntation of the analyst's competency up-to-date and on fi			Х				
5 15 OI	Verificatio	on/validation documentation for methods (NELAC Ch	napter 5)		 	<u> </u>			
	1.				1.				
		methods used to generate the data documented, verifie	d, and validated, where app	icable?	Х	<u> </u>			
516 OI		y standard operating procedures (SOPs)							
		tory SOPs current and on file for each method performe			Х				
1.		tified by the letter "R" must be included in the laboratory			ort(s). I	tems			
		by the letter "S" should be retained and made available u		ate retention period.					
2.	O = organ	ic analyses; I = inorganic analyses (and general chemist	ry, when applicable);						
3.	NA = Not a	applicable;							
4.	NR = Not	reviewed;							
5.	ER# = Exc	ception Report identification number (an Exception Repo	rt should be completed for a	n item if "NR" or "No" i	s check	(ed).			[

1

Laboratory Review Checklist: Exception Reports - Page 4 of 4

	ry Name:	Eurofins St. Louis	LRC Date:	11/22/2023
Project N	ame:	Radiological Sampling	Laboratory Job Number:	160-51921-1
Reviewer	Name:	Micha Korrinhizer		
ER # ¹	T		Description	
R10B			,	samples was diluted due to the presence of calcium
	which inte	rferes with lithium: 2310305-06 (JKS-72	2-20231017-CCR) (160-51921-1). Elevated re	eporting limits (RLs) are provided.
Misc				
1.	Items ider	ntified by the letter "R" must be included	in the laboratory data package submitted in t	the TRRP. required report(s) Items
1.			made available upon request for the appropri	,
2.	O = organ	ic analyses; I = inorganic analyses (and		
~	NA = Not a	applicable:		
3.		••		
3. 4. 5.	NR = Not	reviewed;	Exception Report should be completed for a	n item if "NR" or "No" is checked).
4.	NR = Not	reviewed;	Exception Report should be completed for a	n item if "NR" or "No" is checked).
4.	NR = Not	reviewed;	Exception Report should be completed for a	n item if "NR" or "No" is checked).
4.	NR = Not	reviewed;	Exception Report should be completed for a	n item if "NR" or "No" is checked).
4.	NR = Not	reviewed;	Exception Report should be completed for a	n item if "NR" or "No" is checked).
4.	NR = Not	reviewed;	Exception Report should be completed for a	n item if "NR" or "No" is checked).
4.	NR = Not	reviewed;	Exception Report should be completed for a	n item if "NR" or "No" is checked).
4.	NR = Not	reviewed;	Exception Report should be completed for a	n item if "NR" or "No" is checked).

1

APPENDIX B STATISTICAL ANALYSIS TABLES AND FIGURES

JANUARY 2024

Appendix B - Table 1 Kruskal-Wallis Test Comparisons of Upgradient Wells Calaveras Power Station Evaporation Pond

Analyte	N	N Detect	Percent Detect	DF	statistic	p-value	Conclusion	UPL Type
Boron	38	38	100.00%	1	20.4	< 0.001	Significant Difference	Intrawell
Calcium	39	39	100.00%	1	28.4	<0.001	Significant Difference	Intrawell
Chloride	39	39	100.00%	1	28.4	<0.001	Significant Difference	Intrawell
Fluoride	39	21	53.85%	1	0.159	0.69	No Significant Difference	Interwell
рН	39	39	100.00%	1	0.272	0.602	No Significant Difference	Interwell
Sulfate	39	38	97.44%	1	22.4	< 0.001	Significant Difference	Intrawell
TDS	39	39	100.00%	1	28.3	<0.001	Significant Difference	Intrawell

<u>Notes</u>

Non-detects were substituted with a value of half the detection limit for calculations.

N: number of data points

DF: degrees of freedom

statistic: Kruskal Wallis test statistic

p-value: P-values below 0.05 indicate that the median concentrations in the upgradient wells are significantly different from each other and the upgradient wells should not be pooled. p-value: P-values equal or above 0.05 indicate that the median concentrations in the upgradient wells are not significantly different from each other and the upgradient wells can be pooled.

Appendix B - Table 2 Descriptive Statistics for Upgradient Wells Calaveras Power Station Evaporation Pond

Analyte	Well	Units	Ν	N Detect	Percent	Min ND	Max ND	Min Detect	Median	Mean	Max Detect	SD	CV	Distribution
					Detect									
Boron	JKS-47	mg/L	21	21	100.00%			0.59	0.817	0.817	1.05	0.112	0.13701097	Normal
Boron	JKS-63	mg/L	17	17	100.00%			0.8	1.12	1.16	2.03	0.27	0.23202491	Lognormal
Calcium	JKS-47	mg/L	21	21	100.00%			26.2	62.1	66.7	168	33	0.49510928	Lognormal
Calcium	JKS-63	mg/L	18	18	100.00%			174	932	867	1200	273	0.31483636	NDD
Chloride	JKS-47	mg/L	21	21	100.00%			53.9	154	156	279	58.1	0.37158222	Normal
Chloride	JKS-63	mg/L	18	18	100.00%			1160	2300	2110	3020	636	0.30087508	Normal
Fluoride	Pooled	mg/L	39	21	53.85%	0.009	0.18	0.05	0.0971	0.118	0.382	0.121	1.02259573	NDD
рН	Pooled	SU	39	39	100.00%			4.58	5.85	5.82	6.6	0.365	0.0626251	NDD
Sulfate	JKS-47	mg/L	21	21	100.00%			171	266	268	369	50	0.18649811	Normal
Sulfate	JKS-63	mg/L	18	17	94.44%	0.023	0.023	1640	1840	1760	2120	455	0.25888282	NDD
TDS	JKS-47	mg/L	21	21	100.00%			665	904	911	1240	167	0.18280084	Normal
TDS	JKS-63	mg/L	18	18	100.00%			4760	6540	6920	10700	1910	0.27653674	Normal

<u>Notes</u>

Non-detects were substituted with a value of half the detection limit for calculations.

Well = Pooled, indicates that the summary statistics were produced for the pooled upgradient wells based on the Kruskal-Wallis test (Table 1).

SU: Standard units

N: number of data points

ND: Non-detect

SD: Standard Deviation

CV: Coefficient of Variation (standard deviation divided by the mean)

Appendix B - Table 3 Potential Outliers in Upgradient Wells Calaveras Power Station Evaporation Pond

Well	Sample	Date	Analyte	Units	Detect	Concentrati on	UPL type	Distribution		Visual Outlier		Log Statistical Outlier	Log Visual Outlier		Statistical and Visual Outlier	Notes
JKS-63	63R001	08/20/2019	Boron	mg/L	TRUE	2.03	Intrawell	Lognormal	х	х	х	Х	х	х	0	
JKS-47	JKS-47-WG-20191023-02	10/23/2019	pH	SU	TRUE	4.58	Interwell	NDD	х	х	х	х	х	Х	0	
JKS-63	JKS-63R-WG-20191023-02	10/23/2019	pH	SU	TRUE	4.76	Interwell	NDD	x	Х	Х	х	х	х	0	

<u>Notes</u>

NDD: No Discernible Distribution

SU: Standard units

Outlier tests were performed on detected data only.

Statistical outliers were determined using a Dixon's test for N < 25 and with Rosner's test for N > 25.

Visual outliers were identified if they fall above the confidence envelope on the QQ plot.

Data points were considered potential outliers if they were both statistical and visual outliers.

NDD wells had data points considered as potential outliers if they were either a normal or lognormal outlier.

[Blank] data distribution indicates that the well data did not have enough detected data points for outlier analysis.

Lognormally distributed data was first log-transformed before visual and statistical outlier tests were performed.

Normal data distribution indicates that the well data was directly used for statistical and visual outlier tests.

NDD indicates that both the untransformed and transformed data were examined with statistical and visual outlier tests.

'0' indicates that the data point was a statistical and visual outlier but was retained after review by the hydrogeologist.

Appendix B - Table 4 Mann Kendall Test for Trends in Upgradient Wells Calaveras Power Station Evaporation Pond

Analyte	UPL Type	Well	N	Num Detects	Percent Detect	p-value	tau	Conclusion
Boron	Intrawell	JKS-47	21	21	100.00%	0.492	0.114	Stable, No Trend
Boron	Intrawell	JKS-63	17	17	100.00%	0.0523	0.349	Stable, No Trend
Calcium	Intrawell	JKS-47	21	21	100.00%	0.88	-0.0239	Stable, No Trend
Calcium	Intrawell	JKS-63	18	18	100.00%	0.0229	0.393	Increasing Trend
Chloride	Intrawell	JKS-47	21	21	100.00%	0.525	-0.101	Stable, No Trend
Chloride	Intrawell	JKS-63	18	18	100.00%	<0.001	0.778	Increasing Trend
Fluoride	Interwell (S-4)	7, JKS-63	39	21	53.85%	0.0216	-0.273	Decreasing Trend
рН	Interwell (S-4)	7, JKS-63	39	39	100.00%	<0.001	0.466	Increasing Trend
Sulfate	Intrawell	JKS-47	21	21	100.00%	0.698	-0.0667	Stable, No Trend
Sulfate	Intrawell	JKS-63	18	17	94.44%	0.879	-0.0266	Stable, No Trend
TDS	Intrawell	JKS-47	21	21	100.00%	0.612	-0.0857	Stable, No Trend
TDS	Intrawell	JKS-63	18	18	100.00%	<0.001	0.647	Increasing Trend

Notes

Non-detects were substituted with a value of zero for trend calculations.

N: number of data points

tau: Kendall's tau statistic

p-value: A two-sided p-value describing the probability of the H0 being true (α =0.05).

Trend tests were performed on all upgradient data, only if the dataset met the minimum data quality criteria (ERM 2017)

Appendix B - Table 5 Calculated Prediction Limits for Upgradient Datasets Calaveras Power Station Evaporation Pond

Analyte	UPL Type	Trend	Well		Num	Percent	LPL	UPL	Units I	Method	Final LPL	Final UPL	Notes
					Detects	Detects							
Boron	Intrawell	Stable, No Trend	JKS-47	21	21	100.00%		1.01	mg/L, 95	5% UPL (t)			
Boron	Intrawell	Stable, No Trend	JKS-63	17	17	100.00%		1.65	mg/L, 95	5% UPL (t)		Х	
Calcium	Intrawell	Stable, No Trend	JKS-47	21	21	100.00%		125	mg/L, 95	5% UPL (t)			
Calcium	Intrawell	Increasing Trend	JKS-63	18	18	100.00%		1410	mg/L tre	ended UPL		Х	
Chloride	Intrawell	Stable, No Trend	JKS-47	21	21	100.00%		259	mg/L, 95	5% UPL (t)			
Chloride	Intrawell	Increasing Trend	JKS-63	18	18	100.00%		3570	mg/L tre	nded UPL		Х	
Fluoride	Interwell	Decreasing Trend (S-4	7, JKS-63	39	21	53.85%		0.243	mg/L tre	nded UPL		Х	
pH	Interwell	Increasing Trend (S-4	7, JKS-63	39	39	100.00%	5.08	6.68	SU tre	nded UPL	Х	Х	
Sulfate	Intrawell	Stable, No Trend	JKS-47	21	21	100.00%		356	mg/L, 95	5% UPL (t)			
Sulfate	Intrawell	Stable, No Trend	JKS-63	18	17	94.44%		2550	mg/L % K	M UPL (t)		Х	
TDS	Intrawell	Stable, No Trend	JKS-47	21	21	100.00%		1210	mg/L, 95	5% UPL (t)			
TDS	Intrawell	Increasing Trend	JKS-63	18	18	100.00%		11600	mg/L tre	nded UPL		Х	

Notes

Non-detects were substituted with a value of half the detection limit for calculations.

UPL: upper prediction limit

LPL: Lower prediction limit. These were only calculated for pH

UPLs were constructed with a site wide false positive rate of 0.1 and a 1 of 2 retesting.

UPLs were calculated using ProUCL software.

SU: Standard units

NP: non parametric

RL: Reporting Limit

Intra: indicates an intrawell UPL was used.

Inter: indicates an interwell UPL was used.

In the case where multiple UPLs were calculated for an analyte, the maximum UPL was used as the final UPL.

In the case where multiple LPLs were calculated for an pH the minimum LPL was used as the final LPL.

Appendix B - Table 6 Comparisons of Downgradient Wells to Prediction Limits Calaveras Power Station Evaporation Pond

Analyte		Well	LPL	UPL	Units	Recent	Observatio	Qualifier	Obs > UPL	Notes	Mann	Mann	WRS p-	WRS	Exceed	Overall Conclusion
						Date					Kendall p-	Kendall tau		Conclusion	Median	
Flu	uoride	JKS-36		0.243	mg/L	10/17/2023	0.517		х	Trend Test: Stable, No Trend	0.603	0.0847	<0.001	***	Х	Both Exceedance
Flu	uoride	JKS-61		0.243	mg/L	10/17/2023	0.445		х	Trend Test: Decreasing Trend	0.0433	-0.332	0.0191	*	Х	Both Exceedance
	рН	JKS-36	5.08	6.68	SU	10/17/2023	6.99		х	Trend Test: Stable, No Trend	0.542	0.105	0.166	NS		UPL Exceedance
	рН	JKS-61	5.08	6.68	SU	10/17/2023	7.51		х	Trend Test: Stable, No Trend	0.717	0.0574	0.955	NS		UPL Exceedance

<u>Notes</u>

Non-detects were substituted with a value of zero for trend calculations.

UPL: Upper Prediction Limit

ND: Not detected

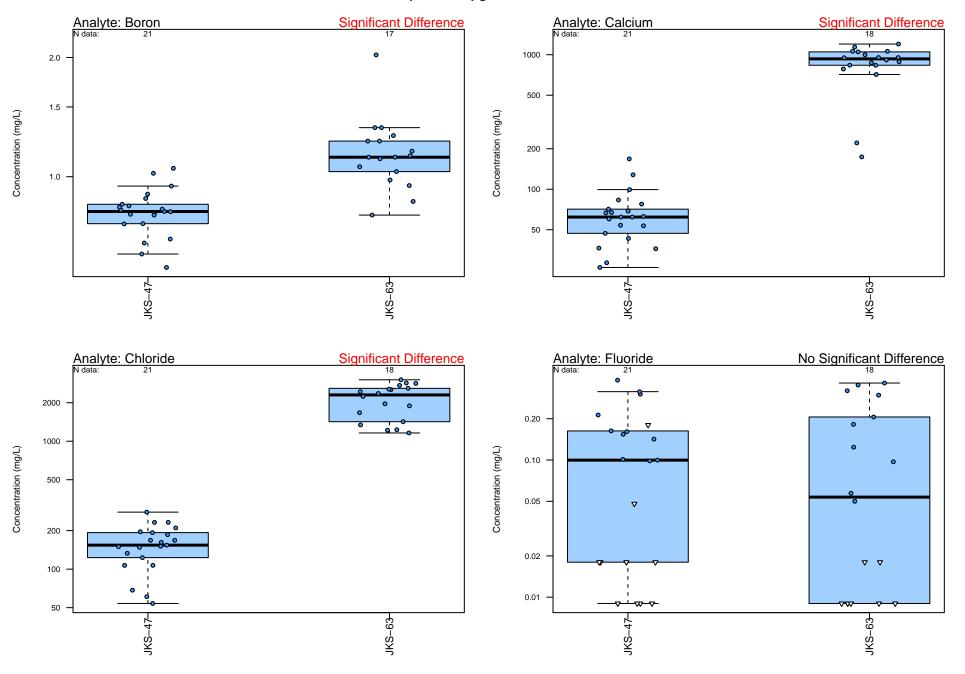
SU: Standard units

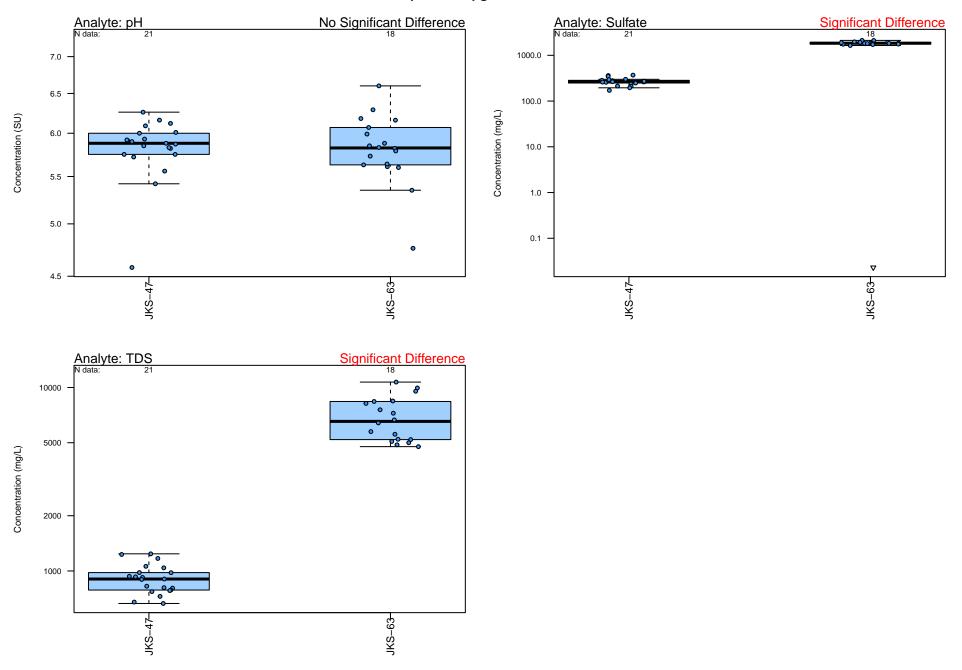
tau: Kendall's tau statistic

Obs > UCL: Exceed 'X' indicates that the most recent observed value is higher than the UPL (or out of range of the LPL and UPL in the case of pH).

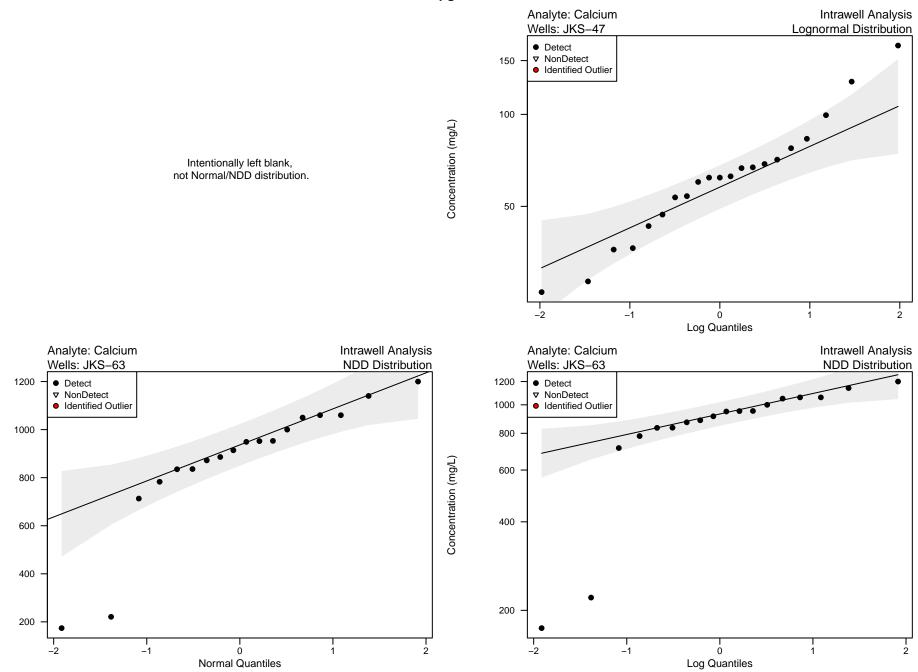
Obs > UCL: Exceed 'X0' indicates that the two most recent values are higher than the UPL, but the upgradient well is 100% ND.

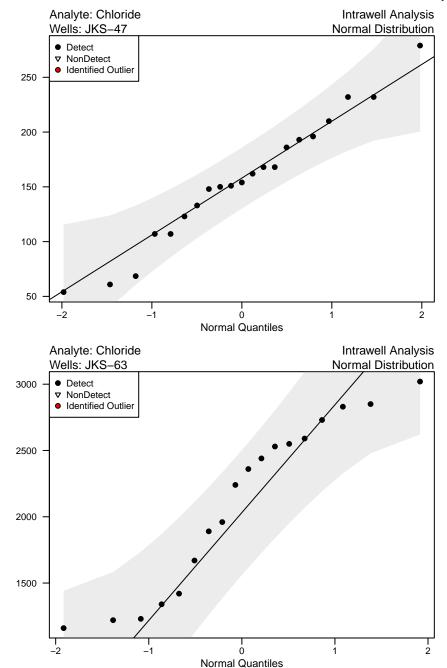
Obs > UCL: Exceed '0' indicated that the most recent observed value is higher than the UPL, but is not scored as an SSI due to Double Quantification Rule (ERM 2017).

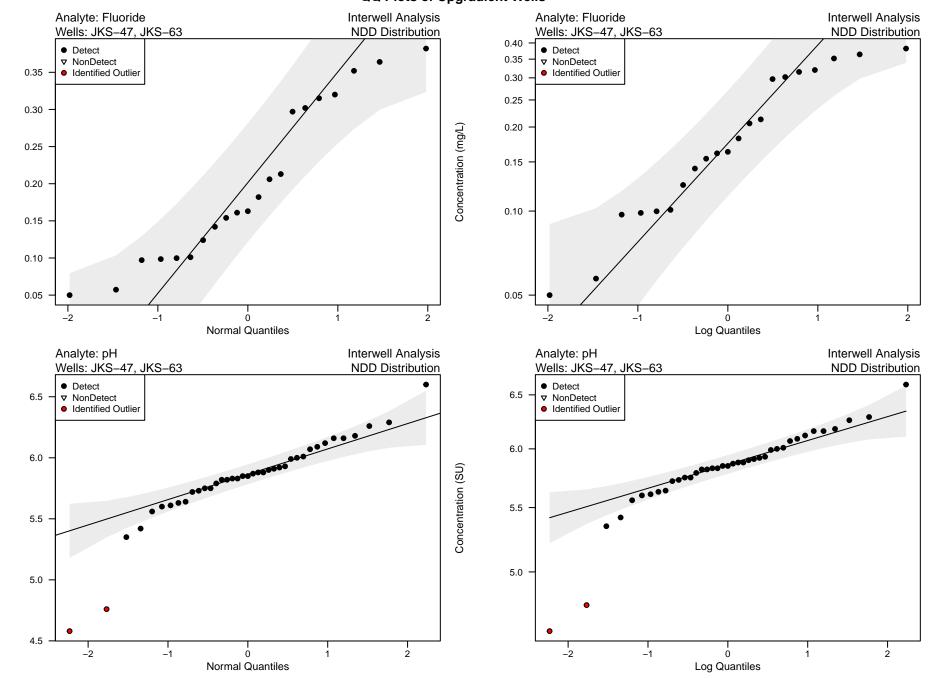

WRS: Wilcoxon Rank Sum test comparing if median of downgradient well is larger than the UPL (for pH, also checks if median is less than LPL).

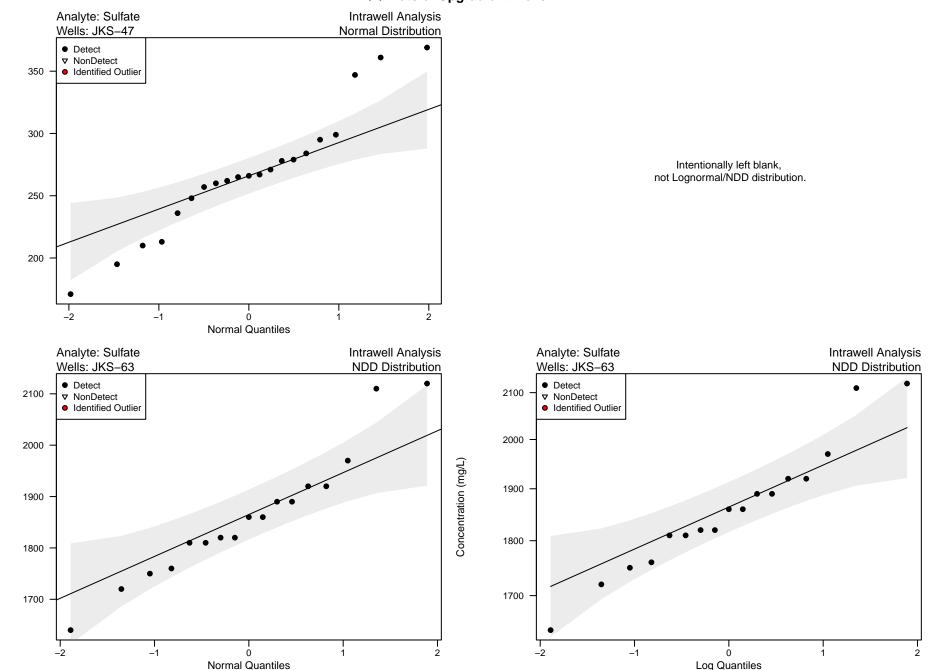

WRS p-value: A one-sided p-value describing the probability of the H0 (UPL/LPL) being true (a=0.05).

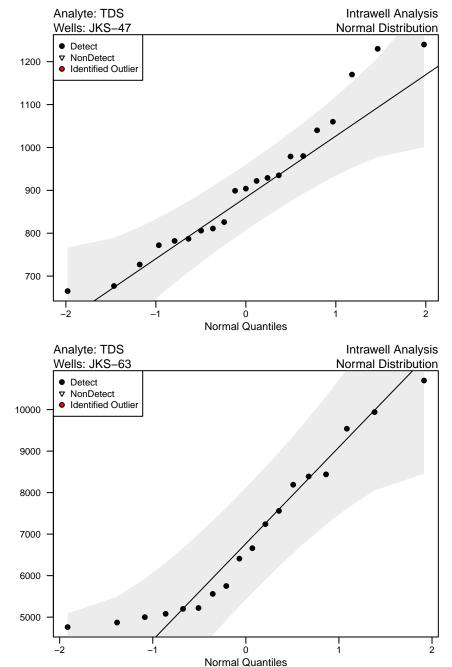
Overall: UPL Exceedance - most recent sampling event exceeds the UPL, but median of the well is not greater than UPL.


Overall: WRS Exceedance - most recent sampling event does not exceed the UPL, but median of the well is greater than UPL.


Overall: Both Exceedance - most recent sampling event exceeds the UPL and median of the well is larger than the UPL.

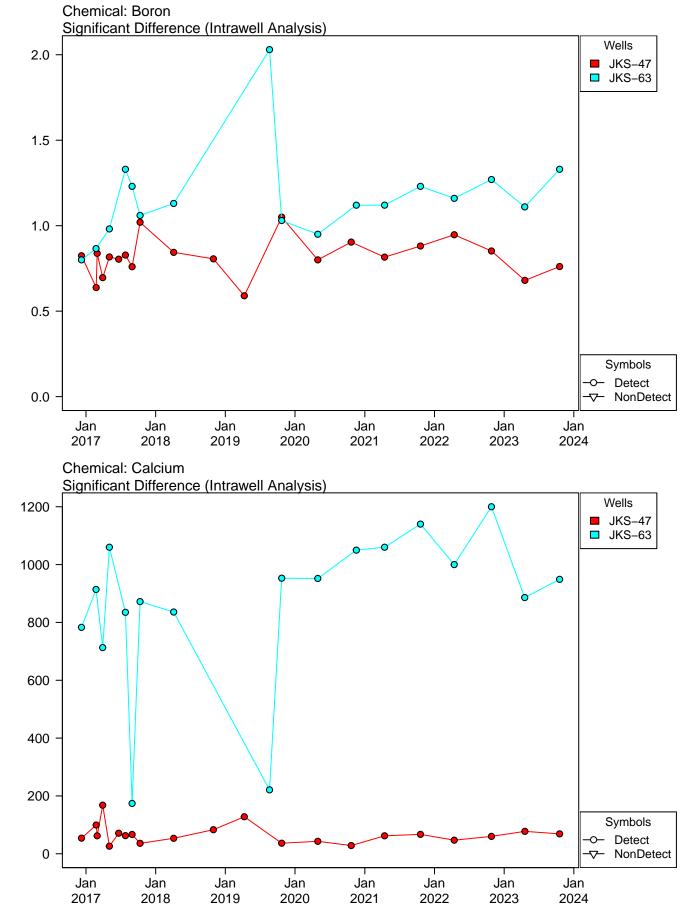


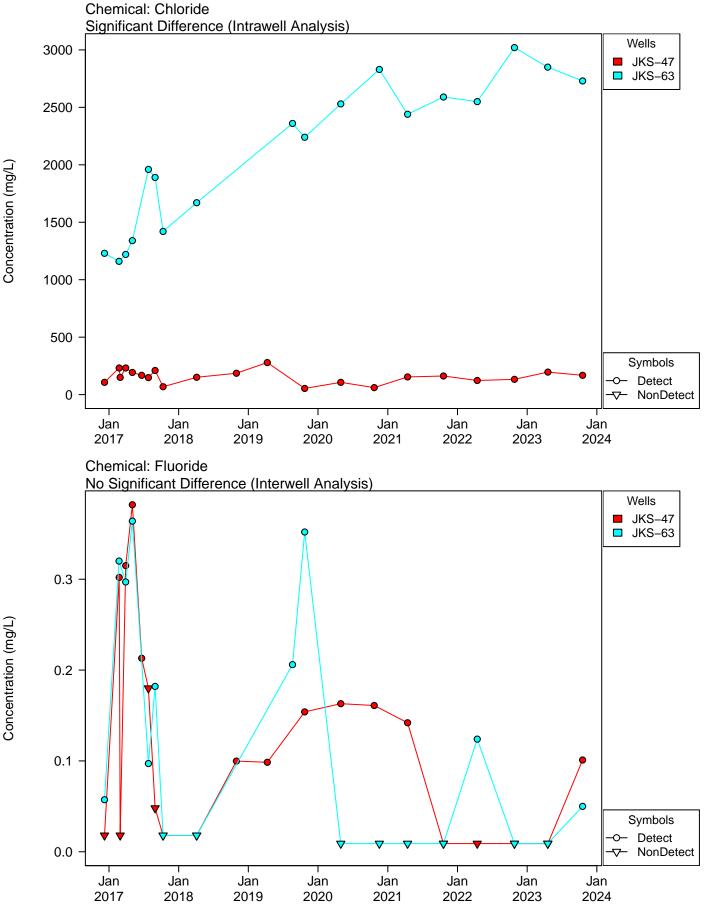


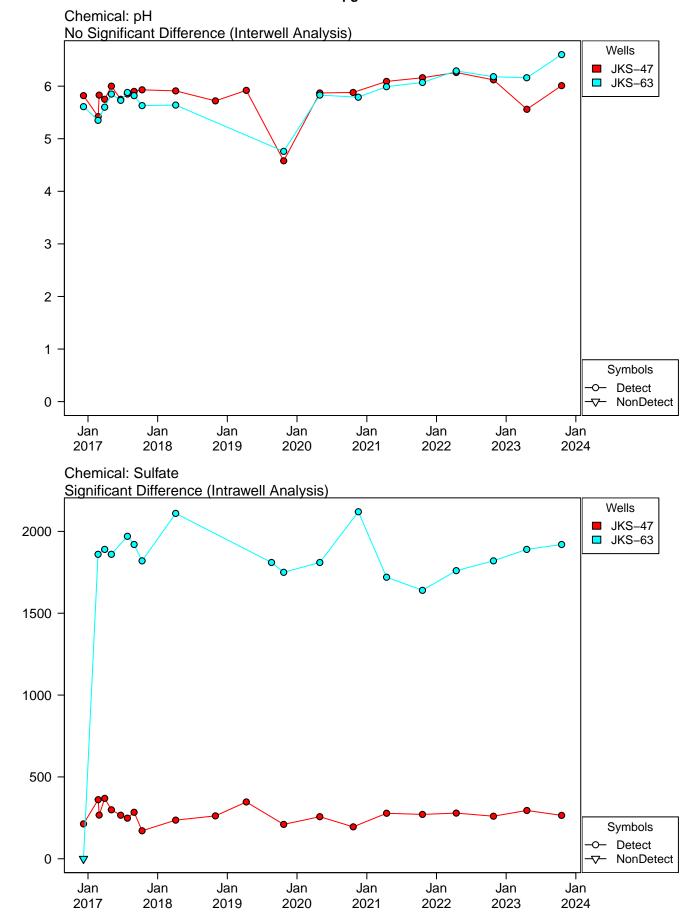


Intentionally left blank, not Lognormal/NDD distribution.

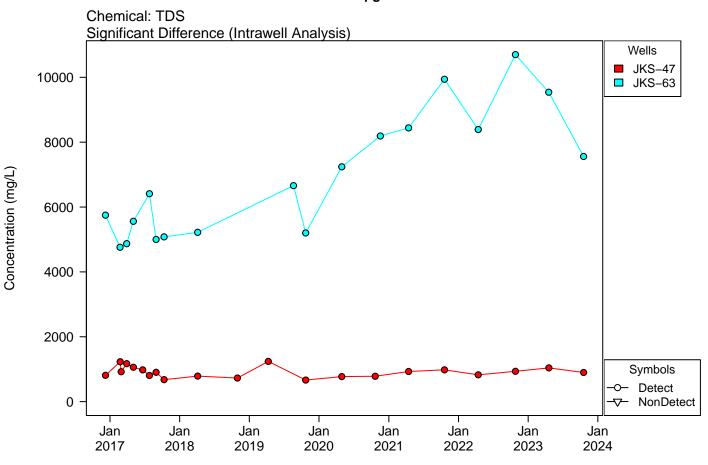
Intentionally left blank, not Lognormal/NDD distribution.



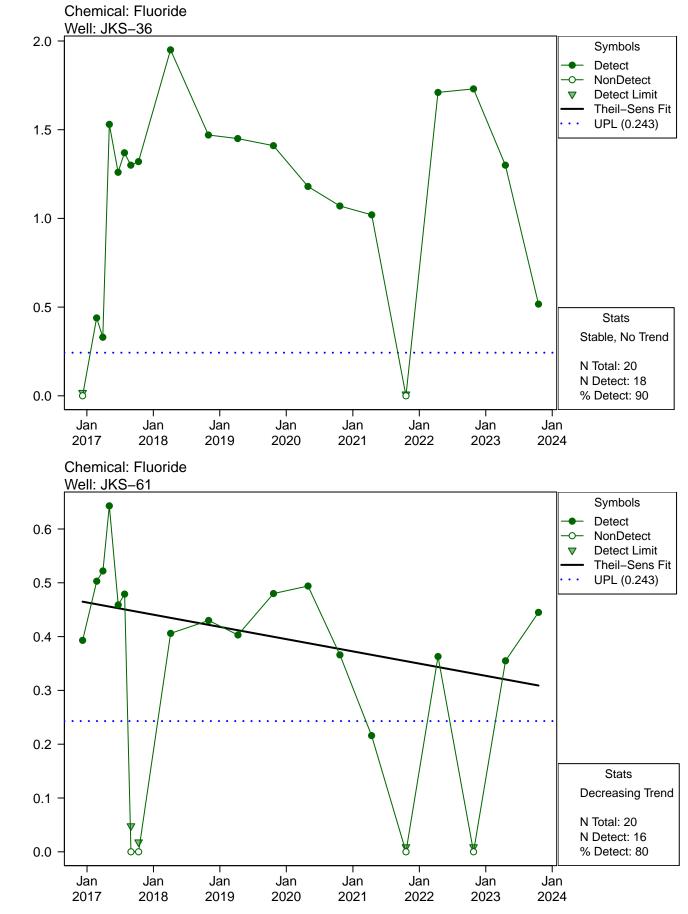



Intentionally left blank, not Lognormal/NDD distribution.

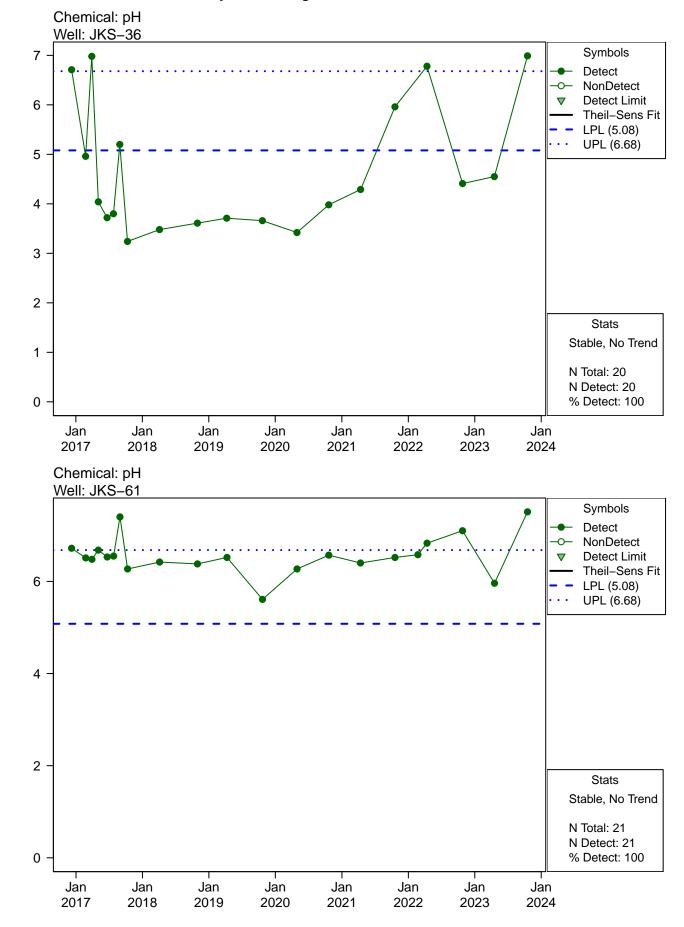
Intentionally left blank, not Lognormal/NDD distribution.



Concentration (mg/L)



Concentration (mg/L)



Appendix B – Figure 4 Unit: Evaporation Pond Trend Analysis of Downgradient Wells with Exceedances

Concentration (mg/L)

Appendix B – Figure 4 Unit: Evaporation Pond Trend Analysis of Downgradient Wells with Exceedances

APPENDIX C APRIL 2023 GROUNDWATER SAMPLING RESULTS

JANUARY 2024

ERM

CityCentre Four 840 West Sam Houston Parkway North, Suite 600 Houston, Texas 77024

Telephone: +281 600 1000 Fax: +281 520 4625

www.erm.com

August 31, 2023

Mr. Michael Malone CPS Energy 500 McCullough Avenue San Antonio, Texas 78215

Reference: 0681818

Subject: April 2023 Groundwater Sampling Event Calaveras Power Station CCR Units San Antonio, Texas

Introduction

Title 40 Code of Federal Regulations, Part 257, (40 CFR §257) Subpart D [a.k.a. Coal Combustion Residual (CCR) Rule] was published in the Federal Register in April 2015 and became effective in October 2015. Additionally, Title 30, Texas Administrative Code, Chapter 352 (30 TAC 352) (a.k.a. Texas CCR Rule), became effective in May 2020. One of the many requirements of the Federal and Texas CCR Rule was for CPS Energy to determine if there are impacts to groundwater from the surface impoundments [Evaporation Pond (EP), Bottom Ash Ponds (BAPs), and Sludge Recycling Holding Pond (SRHP)] and the landfill [Fly Ash Landfill (FAL)] that contain CCR at the Calaveras Power Station.

In the initial 2017 Annual Groundwater Monitoring and Corrective Action Report for each CCR unit, the downgradient monitoring well results from the October 2016 sampling event were compared to Upper Prediction Limits (UPLs) and Lower Prediction Limits (LPLs). UPLs and LPLs were calculated in the Annual Groundwater Monitoring and Corrective Action Reports for the purpose of determining a potential statistically significant increase (SSI) over background levels. In the subsequent Annual Groundwater Monitoring and Corrective Action Reports for each CCR unit, the downgradient monitoring well results from the previous October sampling events were compared to updated UPLs and LPLs. These updated UPLs and LPLs were recalculated in the respective Annual Groundwater Monitoring and Corrective Action Reports using the additional data collected from the previous year. The April 2023 groundwater sample results were compared to the updated UPLs and LPLs and the evaluations of the sample results indicated a potential SSI for a limited number of constituents from the EP, FAL, and BAPs. No potential SSIs were identified for any constituents from the SRH Pond.

According to the Federal CCR Rule [40 CFR §257.94(e)] and Texas CCR Rule [30 TAC §352.941(c)], if the owner or operator of a CCR unit determines there is a SSI over background levels for one or more Appendix III constituents, the owner or operator may demonstrate that a source other than the CCR unit caused the SSI over background levels or that the SSI resulted from error in sampling, analysis, statistical evaluation or natural variation in groundwater quality. The CCR Rule also indicates that the owner or operator must complete the written demonstration within 90 days of detecting a SSI over the background levels. If a successful demonstration is

Texas Registered Engineering Firm F-2393

Page 1 of 3

Texas Board of Professional Geoscientist Firm 50036 © Copyright 2023 by The ERM International Group Limited and/or its affiliates ('ERM'). All Rights Reserved. No part of this work may be reproduced or transmitted in any form or by any means, without prior written permission of ERM. (HOU) 0503422\DM\A10944 AUS\Projects\0681818\DM\12200A Apr 2023 GW Ltr

August 31, 2023 Reference: 0681818

Page 2 of 3

completed within the 90-day period, the owner or operator may continue with a detection monitoring program.

To address the potential SSIs identified in the previous *Annual Groundwater Monitoring and Corrective Action Reports*, CPS Energy prepared six *Written Demonstrations – Responses to Potential Statistically Significant Increases*¹ (dated 4 April 2018; 27 February 2019; 27 April 2020; 18 June 2021; 26 April 2022; and 31 May 2023). Based on the evidence provided in the *Written/ Alternative Source Demonstrations*, no SSIs over background levels were determined for any of the CPS Energy CCR units (EP, FAL, BAPs, and SRHP) and therefore, CPS Energy continued with a detection monitoring program that would include semiannual sampling.

Sampling Events Summary

The first semiannual groundwater sampling event for 2023 was conducted on April 18 and 19, 2023. The sampling event included the collection of water level measurements and groundwater samples from all the background and downgradient monitoring wells in the CCR monitoring program. Monitoring wells were gauged and then sampled by CPS Energy using low flow sampling techniques during the sampling event. The groundwater samples were analyzed for Appendix III constituents.

For each CCR unit, the downgradient monitoring well results from the April 2023 sampling event was compared to the updated UPLs and LPLs recalculated in their respective 2022 Annual Groundwater Monitoring and Corrective Action Report. The April 2023 groundwater sample results for the downgradient monitoring wells in each CCR unit are summarized in Attachment 1.

Although the evaluations of the April 2023 groundwater sample results indicate potential SSIs for a limited number of constituents, the constituents associated with the potential SSIs are the same constituents, were detected at similar concentrations and were identified in one or all of the previous *Written/ Alternative Source Demonstrations*. The evaluations of the April 2023 groundwater sample results with potential SSIs are summarized below.

EP – The constituents associated with potential SSIs include fluoride in JKS-36 and JKS-61; and pH in JKS-36. As previously presented in the *Written/ Alternative Source Demonstrations*, the concentrations of fluoride and pH appear to reflect natural variation in groundwater quality in the vicinity of the CCR unit. The reported April 2023 concentrations were within the range of naturally occurring concentrations identified in the *Written/ Alternative Source Demonstrations*.

FAL – The constituents associated with potential SSIs include pH in JKS-31 and JKS-46. As previously presented in the *Written/ Alternative Source Demonstrations*, the concentration of pH in JKS-31 appears to reflect natural variation in groundwater quality in the vicinity of the CCR unit. The concentration of pH in JKS-46 is slightly higher than the naturally occurring range previously detected at this monitor well; however, the detected concentration is within historical ranges of naturally occurring pH values detected at JKS-36, JKS-40, and JKS-43 located in the vicinity of the

¹ The term *Written Demonstration*' was historically used for a document that provided responses to potential SSIs. Starting with the 26 April 2022 document, the term *Alternative Source Demonstration*' was used for these types of documents.

August 31, 2023 Reference: 0681818

Page 3 of 3

Northern CCR Units. The reported April 2023 concentrations were within the range of naturally occurring concentrations identified in the *Written/ Alternative Source Demonstrations*.

BAPs – The constituents associated with potential SSIs include boron in JKS-48, JKS-49, JKS-50R, JKS-52, JKS-55, and JKS-56; and fluoride in JKS-48, JKS-52, and JKS-55. As previously presented in the *Written/ Alternative Source Demonstrations*, the concentrations of boron and fluoride appear to reflect natural variation in groundwater quality in the vicinity of the CCR unit. The reported April 2023 concentrations were within the range of naturally occurring concentrations identified in the *Written/ Alternative Source Demonstrations*.

SRHP – The constituents associated with potential SSIs include boron in JKS-52, JKS-53, and JKS-54; and fluoride in JKS-52 and JKS-54. As previously presented in the *Written/ Alternative Source Demonstrations*, the concentrations of boron and fluoride appear to reflect natural variation in groundwater quality in the vicinity of the CCR unit. The reported April 2023 concentrations were within the range of naturally occurring concentrations identified in the *Written/ Alternative Source Demonstrations*.

Note: As discussed in the 2022 Annual Groundwater Monitoring and Corrective Action Reports for the BAPs and SRHP, the groundwater monitoring well network was revised to designate newly installed well JKS-70 as an upgradient well. In addition, for the BAPs, JKS-49 was redesignated from an upgradient well to a downgradient well. Therefore, starting with the 2022 monitoring events, all statistical analyses (including the establishment of UPLs, LPLs and potential exceedances) were conducted using an upgradient monitoring well network comprised of JKS-51 and JKS-70. Further noted in the *Reports*, JKS-70 was only sampled during one event in 2022, and the incorporation of those analytical results into the statistical analyses have resulted in lower UPLs, and therefore the potential for additional exceedances. CPS Energy will continue to collect additional sample results from JKS-70 to better assess and evaluate these potential exceedances.

Conclusions

Based on the April 2023 groundwater sample results and the evidence provided in one or all of the *Written/ Alternative Source Demonstrations*, no SSIs over background levels have been determined for any of the CPS Energy CCR units (EP, FAL, BAPs, and SRHP) and therefore, CPS Energy should continue with a detection monitoring program. The second semiannual sampling event should be performed in October 2023.

We appreciate the opportunity to work with you on this project. Please contact me if you should have any questions.

Sincerely,

Environmental Resources Management Southwest, Inc.

Nicholas Houtchens Senior Geologist

ATTACHMENT 1

APRIL 2023 GROUNDWATER SAMPLE RESULTS

April 2023 Groundwater Sample Results CCR Unit: Evaporation Pond CPS Energy Calaveras Power Station San Antonio, TX

			CCR Unit	EP	EP	EP	EP
			Well Designation	Downgradient	Downgradient	Downgradient	Downgradient
			Well ID	JKS-36	JKS-61	JKS-62	JKS-64
			Sample Date	4/18/2023	4/19/2023	4/19/2023	4/19/2023
			Sample Type Code	Ν	Ν	Ν	Ν
Constituent	Units	2022	2022				
Constituent	Units	LPL - EP	UPL - EP				
Boron	mg/L		1.67	0.415	1.06	NS	
Calcium	mg/L		1,480	166	71.2	NS	
Chloride	mg/L		3,420	341	150	NS	
Fluoride	mg/L		0.252	1.30	0.355	NS	0.107
pH, Field	SU	4.94	6.51	4.55	5.96	NS	5.51
Sulfate	mg/L		2,100	950	331	NS	212
Total Dissolved Solids	mg/L		10,500	2,020	1,090	NS	574

NOTES:

Shaded results either exceed of the Upper Prediction Limit (UPL) or are below the Lower Prediction Limit (LPL) for this CCR unit.

Sample Type Code: N - Normal

NS: Not sampled (well blockage or limited water in well column)

April 2023 Groundwater Sample Results CCR Unit: Fly Ash Landfill CPS Energy Calaveras Power Station San Antonio, TX

CCR Unit				FAL	FAL	FAL	FAL	FAL
Well Designation				Downgradient	Downgradient	Downgradient	Downgradient	Downgradient
Well ID				JKS-31	JKS-33	JKS-33	JKS-46	JKS-60
		Sample Date	4/18/2023	4/19/2023	4/19/2023	4/18/2023	4/19/2023	
Sample Type Code				Ν	Ν	FD	Ν	Ν
Constituent	Units	2022	2022					
		LPL - FAL	UPL - FAL					
Boron	mg/L		5.16	0.442	0.988	0.996	0.425	0.579
Calcium	mg/L		948	205	376	386	91.4	358
Chloride	mg/L		5,300	389	732	752	46.2	287
Fluoride	mg/L		4.46	0.706	1.05	1.05	1.07	0.218
pH, Field	SU	4.98	7.10	4.71	5.75	5.75	3.88	5.77
Sulfate	mg/L		8,600	1,070	1,550	1,600	766	1,220
Total Dissolved Solids	mg/L		20,500	2,120	3,680	3,630	1,120	2,310

NOTES:

Shaded results either exceed of the Upper Prediction Limit (UPL) or are below the Lower Prediction Limit (LPL) for this CCR unit. Sample Type Code: N - Normal; FD - Field Duplicate

April 2023 Groundwater Sample Results CCR Unit: Bottom Ash Ponds CPS Energy Calaveras Power Station San Antonio, TX

CCR Unit				BAP						
Well Designation				Downgradient						
Well ID				JKS-48	JKS-48	JKS-49	JKS-50R	JKS-52	JKS-55	JKS-56
Sample Date				4/19/2023	4/19/2023	4/18/2023	4/18/2023	4/19/2023	4/18/2023	4/19/2023
Sample Type Code			Ν	FD	Ν	Ν	Ν	Ν	Ν	
Constituent	Units	2022	2022							
	Units	LPL - BAP	UPL - BAP							
Boron	mg/L		0.726	1.93	1.97	2.24	5.15	2.47	0.794	2.86
Calcium	mg/L		404	118	120	106	119	179	126	92.0
Chloride	mg/L		658	434	470	404	84.8	412	406	138
Fluoride	mg/L		0.547	0.964	0.975	0.289	0.310	0.626	0.844	0.398
pH, Field	SU	5.48	7.16	6.72	6.72	7.16	6.60	6.74	6.80	6.68
Sulfate	mg/L		625	182	197	202	171	256	173	39.8
Total Dissolved Solids	mg/L		3,180	1,370	1,400	1,380	1,030	1,650	1,380	791

NOTES:

Shaded results either exceed of the Upper Prediction Limit (UPL) or are below the Lower Prediction Limit (LPL) for this CCR unit. Sample Type Code: N - Normal; FD - Field Duplicate

April 2023 Groundwater Sample Results CCR Unit: SRH Pond CPS Energy Calaveras Power Station San Antonio, TX

			CCR Unit	SRH Pond	SRH Pond	SRH Pond
		Downgradient	Downgradient	Downgradient		
		JKS-52	JKS-53	JKS-54		
			Sample Date	4/19/2023	4/19/2023	4/19/2023
			Sample Type Code	Ν	Ν	Ν
Constituent	Units	2022	2022			
Constituent		LPL - SRH	UPL - SRH			
Boron	mg/L		0.726	2.47	1.72	1.07
Calcium	mg/L		404	179	140	144
Chloride	mg/L		658	412	450	440
Fluoride	mg/L		0.547	0.626	0.345	0.635
pH, Field	SU	5.48	7.16	6.74	6.52	6.60
Sulfate	mg/L		616	256	312	437
Total Dissolved Solids	mg/L		3,180	1,650	1,580	1,570

NOTES:

Shaded results either exceed of the Upper Prediction Limit (UPL) or are below the Lower Prediction Limit (LPL) for this CCR unit. Sample Type Code: N - Normal; FD - Field Duplicate

ERM HAS OVER 160 OFFICES ACROSS THE FOLLOWING COUNTRIES AND TERRITORIES WORLDWIDE

The Netherlands	ERM's Austin Office 111 Congress Avenue Suite 500		
New Zealand			
Peru	Austin, Texas 78701		
Poland	T . 4 E40 4E0 4700		
Portugal	T: +1 512 459 4700 F: +1 512 597 8368		
Puerto Rico			
Romania	www.erm.com		
Senegal			
Singapore			
South Africa			
South Korea			
Spain			
Switzerland			
Taiwan			
Tanzania			
Thailand			
UAE			
UK			
US			
Vietnam			
	New Zealand Peru Poland Portugal Puerto Rico Romania Senegal Singapore South Africa South Korea Spain Switzerland Taiwan Tanzania Thailand UAE UK		